⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 plani4e.m

📁 用于在matlab平台上进行有限元分析
💻 M
字号:
function [Ke,fe]=plani4e(ex,ey,ep,D,eq)% Ke=plani4e(ex,ey,ep,D)% [Ke,fe]=plani4e(ex,ey,ep,D,eq)%-------------------------------------------------------------% PURPOSE%  Calculate the stiffness matrix for a 4 node isoparametric%  element in plane strain or plane stress.%% INPUT:  ex = [x1 x2 x3 x4]  element coordinates%         ey = [y1 y2 y3 y4]%                             %         ep =[ptype t ir]    element property %                               ptype: analysis type%                               ir: integration rule%                               t : thickness%%         D                   constitutive matrix%%         eq = [bx; by]       bx: body force in x direction%                             by: body force in y direction%% OUTPUT: Ke : element stiffness matrix (8 x 8)%         fe : equivalent nodal forces (8 x 1)%-------------------------------------------------------------% LAST MODIFIED: M Ristinmaa  1995-10-25% Copyright (c)  Division of Structural Mechanics and%                Department of Solid Mechanics.%                Lund Institute of Technology%-------------------------------------------------------------  ptype=ep(1); t=ep(2);  ir=ep(3);  ngp=ir*ir;  if nargin==4   b=zeros(2,1);  else  b=eq; end%--------- gauss points --------------------------------------  if ir==1    g1=0.0; w1=2.0;    gp=[ g1 g1 ];  w=[ w1 w1 ];  elseif ir==2    g1=0.577350269189626; w1=1;    gp(:,1)=[-g1; g1;-g1; g1];  gp(:,2)=[-g1;-g1; g1; g1];    w(:,1)=[ w1; w1; w1; w1];   w(:,2)=[ w1; w1; w1; w1];  elseif ir==3    g1=0.774596669241483; g2=0.;    w1=0.555555555555555; w2=0.888888888888888;    gp(:,1)=[-g1;-g2; g1;-g1; g2; g1;-g1; g2; g1];    gp(:,2)=[-g1;-g1;-g1; g2; g2; g2; g1; g1; g1];    w(:,1)=[ w1; w2; w1; w1; w2; w1; w1; w2; w1];    w(:,2)=[ w1; w1; w1; w2; w2; w2; w1; w1; w1];  else    disp('Used number of integration points not implemented');    return  end  wp=w(:,1).*w(:,2);  xsi=gp(:,1);  eta=gp(:,2);  r2=ngp*2;%--------- shape functions -----------------------------------  N(:,1)=(1-xsi).*(1-eta)/4;  N(:,2)=(1+xsi).*(1-eta)/4;  N(:,3)=(1+xsi).*(1+eta)/4;  N(:,4)=(1-xsi).*(1+eta)/4;  dNr(1:2:r2,1)=-(1-eta)/4;     dNr(1:2:r2,2)= (1-eta)/4;  dNr(1:2:r2,3)= (1+eta)/4;     dNr(1:2:r2,4)=-(1+eta)/4;  dNr(2:2:r2+1,1)=-(1-xsi)/4;   dNr(2:2:r2+1,2)=-(1+xsi)/4;  dNr(2:2:r2+1,3)= (1+xsi)/4;   dNr(2:2:r2+1,4)= (1-xsi)/4;  Ke=zeros(8,8);  fe=zeros(8,1);  JT=dNr*[ex;ey]';%--------- plane stress --------------------------------------if ptype==1    colD=size(D,2);  if colD>3    Cm=inv(D);    Dm=inv(Cm([1 2 4],[1 2 4]));  else    Dm=D;  end      for i=1:ngp      indx=[ 2*i-1; 2*i ];      detJ=det(JT(indx,:));      if detJ<10*eps        disp('Jacobideterminant equal or less than zero!')      end      JTinv=inv(JT(indx,:));      dNx=JTinv*dNr(indx,:);      B(1,1:2:8-1)=dNx(1,:);      B(2,2:2:8)  =dNx(2,:);      B(3,1:2:8-1)=dNx(2,:);      B(3,2:2:8)  =dNx(1,:);      N2(1,1:2:8-1)=N(i,:);      N2(2,2:2:8)  =N(i,:);      Ke=Ke+B'*Dm*B*detJ*wp(i)*t;      fe=fe+N2'*b*detJ*wp(i)*t;  end%--------- plane strain --------------------------------------elseif ptype==2    colD=size(D,2);  if colD>3    Dm=D([1 2 4],[1 2 4]);  else    Dm=D;  end      for i=1:ngp      indx=[ 2*i-1; 2*i ];      detJ=det(JT(indx,:));      if detJ<10*eps        disp('Jacobideterminant equal or less than zero!')      end      JTinv=inv(JT(indx,:));      dNx=JTinv*dNr(indx,:);      B(1,1:2:8-1)=dNx(1,:);      B(2,2:2:8)  =dNx(2,:);      B(3,1:2:8-1)=dNx(2,:);      B(3,2:2:8)  =dNx(1,:);      N2(1,1:2:8-1)=N(i,:);      N2(2,2:2:8)  =N(i,:);      Ke=Ke+B'*Dm*B*detJ*wp(i)*t;      fe=fe+N2'*b*detJ*wp(i)*t;  end  else   error('Error ! Check first argument, ptype=1 or 2 allowed')   returnend%--------------------------end--------------------------------

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -