📄 lpvchkr.m
字号:
function [eigx,eigy,eigxy,fail] = ... lpvchkr(vlpv,nmeas,nctrl,gam,xmat,ymat,vnu,fparm,gparm,gradf,gradg)% [eigx,eigy,eigxy,fail] = % lpvchkr(vlpv,nmeas,nctrl,gam,xmat,ymat,vnu,fparm,gparm,gradf,gradg)% checks reduced-order PDLF LMI solutions on a grid.%% [eigx,eigy,eigxy,fail] = lpvchkr(vlpv,nmeas,nctrl,gam,xmat,ymat)% checks reduced-order SQLF LMI solutions on a grid.%% Inputs: % vlpv varying matrix of the lpv plant at parm values% nmeas,nctrl number of measurements & controls, respectively% gam optimal gamma from solver% xmat,ymat varying-matrix LMI solutions from solver% vnu (VARYING parameter-dependent) parameter rate bound vector% | parm_i | <= nu_i for i = 1,...,s% nu can also be two-sided (2 cols) or a rate grid (> 2 cols)% fparm,gparm VARYING basis-function values at grid points% gradf,gradg VARYING basis-function partial derivatives at grid points% If X or Y is constant, use [] for fparm/gradf or gparm/gradg.%% Outputs: % eigx max eigenvalues of output injection matrices (X)% eigy max eigenvalues of state feedback matrices (Y)% eigxy min eigenvalues of spectral radius matrices (XY)% fail 3-column matrix of indices to LMIs that failed% (column 1 = grid point #, column 2 = vertex # of rate polytope,% column 3 = 0/1/2 for XY/X/Y)if nargin == 0 disp('[eigx,eigy,eigxy,fail] = '); disp(' lpvchkr(vlpv,nmeas,nctrl,gam,xmat,ymat,vnu,fparm,gparm,gradf,gradg)'); returnend% If vlpv, xmat, or ymat aren't varying matrices, vpck them[typ,dum2,dum3,npts1] = minfo(vlpv);if typ == 'syst' vlpv = vpck(vlpv,1); [typ,dum2,dum3,npts1] = minfo(vlpv);end[typ,xrow,xcol,numx] = minfo(xmat);if typ == 'cons' xmat = vpck(xmat,1); [typ,xrow,xcol,numx] = minfo(xmat);end[typ,yrow,ycol,numy] = minfo(ymat);if typ == 'cons' ymat = vpck(ymat,1); [typ,yrow,ycol,numy] = minfo(ymat);endif (xcol ~= yrow) | (xcol ~= ycol) | (xrow > xcol) error('Inconsistent dimensions in X and/or Y');endviv = getiv(vlpv);% If constant X and Yif nargin == 6 vnu = vpck(zeros(npts1,1),viv); nparmx = 0; nparmy = 0; nvertx = 1; nverty = 1; fparm = []; gparm = []; PDLF = 0;else PDLF = 1;end[typ,nparm,nbnds,npts6] = minfo(vnu);if typ ~= 'vary' [nparm,nbnds] = size(vnu); npts6 = npts1; vnu = vpck(kron(ones(npts6,1),vnu),viv);endif nbnds > 2 GRID_PARMV = 1;else GRID_PARMV = 0;endif isempty(fparm) fparm = vpck(ones(npts1,1),1:npts1); gradf = vpck(zeros(npts1,nparm),1:npts1);endif isempty(gparm) gparm = vpck(ones(npts1,1),1:npts1); gradg = vpck(zeros(npts1,nparm),1:npts1);end% Check that the number of grid points and parameters is consistent[dum1,nbasisx,ckvx,npts2] = minfo(fparm);[dum1,nbasisy,ckvy,npts3] = minfo(gparm);if (ckvx ~= 1) | (ckvy ~= 1) error('Error: Basis data should be column vectors.');end[dum1,nbasisgx,nparmgx,npts4] = minfo(gradf);[dum1,nbasisgy,nparmgy,npts5] = minfo(gradg);if (nparmgx ~= nparmgy) error('Error: Number of parameters in basis gradient data inconsistent.');endif (nparmgx ~= nparm) error('Error: Number of parameters in nu inconsistent with gradient data.');endif (nbasisx ~= numx) | (nbasisy ~= numy) error('Error: Basis dimension not consistent');endif (npts1 ~= npts2) | (npts2 ~= npts3) | (npts3 ~= npts4) | ... (npts4 ~= npts5) | (npts5 ~= npts1) disp(['There are ' int2str(npts1) ' points in vlpv']); disp(['There are ' int2str(npts2) ' points in fparm']); disp(['There are ' int2str(npts3) ' points in gparm']); disp(['There are ' int2str(npts4) ' points in gradf']); disp(['There are ' int2str(npts5) ' points in gradg']); disp(['There are ' int2str(npts6) ' points in vnu']); error('Error: number of grid points inconsistent');end nparm = nparmgx;npts = npts1;Npts = int2str(npts);% Identify the parameters on which X and Y should vary parmx = any(vunpck(gradf)) & any(vunpck(vtp(vnu)));parmy = any(vunpck(gradg)) & any(vunpck(vtp(vnu)));nparmx = sum(parmx);nparmy = sum(parmy);if GRID_PARMV & nparmx > 0 nvertx = nbnds;else nvertx = 2^nparmx;endif GRID_PARMV & nparmy > 0 nverty = nbnds;else nverty = 2^nparmy;end% Get matrix containing all combinations of +/- for nparm-dim vector.combmatx = corners(nparmx); % combmatx = 1 if nparmx = 0combmaty = corners(nparmy); % combmaty = 1 if nparmy = 0sys = xtracti(vlpv,1,1);[systype,no,ni,nx] = minfo(sys);nx1 = xrow;nx2 = nx-xrow;ny1 = nmeas-nx2;ny2 = nx2;ne = no-nmeas;ne1 = ne-nctrl;nd = ni-nctrl;nd1 = nd-ny1;eigx = zeros(npts,nvertx);eigy = zeros(npts,nverty);eigxy = zeros(npts^PDLF,1);fail = [];for i = 1:npts% Form the Lyapunov matrices at parm_i fdat = xtracti(fparm,i,1); gdat = xtracti(gparm,i,1); gfdat = xtracti(gradf,i,1); ggdat = xtracti(gradg,i,1); nu = xtracti(vnu,i,1);% Check for a two-sided rate bound, or just a bound on absolute value if nbnds == 1 nu = [-nu nu]; end X = zeros(nx1,nx); Y = zeros(nx,nx); for k = 1:nbasisx X = X + fdat(k) * xtracti(xmat,k,1); end for k = 1:nbasisy Y = Y + gdat(k) * xtracti(ymat,k,1); end X11 = X(:,1:nx1); X12 = X(:,nx1+1:nx);% Get state-space data for parm_i. sys = xtracti(vlpv,i,1); [A,Bd,Bu,Ce,Cy,Ded] = transfr(sys,nmeas,nctrl,nx2); [trow,tcol]=size(Ded); if min(eig(eye(tcol)-Ded'*Ded)) <= 0 disp('I - Ded*Ded < 0'); end B11 = Bd(1:nx1,1:nd1); B12 = Bd(1:nx1,nd1+1:nd); B21 = Bd(nx1+1:nx,1:nd1); B22 = Bd(nx1+1:nx,nd1+1:nd); Ce1 = Ce(1:ne1,:); Ce2 = Ce(ne1+1:ne,:); Cy1 = Cy(1:ny1,1:nx1); Ded11 = Ded(1:ne1,1:nd1); Ded12 = Ded(1:ne1,nd1+1:nd); Ded21 = Ded(ne1+1:ne,1:nd1); Ded22 = Ded(ne1+1:ne,nd1+1:nd); Ahat = A-Bu*Ce2; Bdhat = Bd-Bu*[Ded21 Ded22]; if ny1 == 0 % (state feedback only) Atld11 = A(1:nx1,1:nx1); Atld21 = A(nx1+1:nx,1:nx1); Cetld = Ce(:,1:nx1); else Atld11 = A(1:nx1,1:nx1) - B12*Cy1; Atld21 = A(nx1+1:nx,1:nx1) - B22*Cy1; Cetld = Ce(:,1:nx1) - [Ded12;Ded22]*Cy1; end % Check state feedback LMIs for j = 1:nverty Ydot = zeros(nx,nx); ly = 0; for l = 1:nparm if parmy(l) ~= 0 ly = ly + 1; if GRID_PARMV parmvl = nu(l,j); else parmvl = (nu(l,1)+nu(l,2))/2 + combmaty(j,ly)*(nu(l,1)-nu(l,2))/2; end for k = 1:nbasisy Ydot = Ydot + parmvl * ggdat(k,l) * xtracti(ymat,k,1); end end end LMI_Y = [Y*Ahat' + Ahat*Y - Ydot - gam*Bu*Bu', Y*Ce1', Bdhat; Ce1*Y, -gam*eye(ne1), [Ded11 Ded12]; Bdhat', [Ded11 Ded12]', -gam*eye(nd)]; eigy(i,j) = max(eig(LMI_Y)); if eigy(i,j) >= 0 disp(['Grid point ' int2str(i) ' of ' Npts ' failed']); fail = [fail;[i j 2]]; end end % Check output injection LMIs for j = 1:nvertx X11dot = zeros(nx1,nx1); lx = 0; for l = 1:nparm if parmx(l) ~= 0 lx = lx + 1; if GRID_PARMV parmvl = nu(l,j); else parmvl = (nu(l,1)+nu(l,2))/2 + combmatx(j,lx)*(nu(l,1)-nu(l,2))/2; end for k = 1:nbasisx X11dot = X11dot + parmvl * gfdat(k,l) * sel(xtracti(xmat,k,1),':',1:nx1); end end end if ny1 == 0 LMI_X11 = [Atld11;Atld21]'*X' + X*[Atld11;Atld21] + X11dot; else LMI_X11 = [Atld11;Atld21]'*X' + X*[Atld11;Atld21] + X11dot - gam*Cy1'*Cy1; end LMI_X = [LMI_X11, X*[B11;B21], Cetld'; [B11;B21]'*X', -gam*eye(nd1), [Ded11;Ded21]'; Cetld, [Ded11;Ded21], -gam*eye(ne)]; eigx(i,j) = max(eig(LMI_X)); if eigx(i,j) >= 0 disp(['Grid point ' int2str(i) ' of ' Npts ' failed']); fail = [fail;[i j 1]]; end end % Check spectral radius LMI if PDLF | i == 1 LMI_XY = [Y, [eye(nx1);zeros(nx2,nx1)]; [eye(nx1) zeros(nx1,nx2)], X11]; eigxy(i) = min(eig(LMI_XY)); if eigxy(i) <= 0 disp(['Grid point ' int2str(i) ' of ' Npts ' failed']); fail = [fail;[i 1 0]]; end endend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -