📄 lpvsol.m
字号:
% [gam,xmat,ymat,xyopt] = ... % lpvsol(vlpv,nmeas,nctrl,opt,xyinit,vnu,fparm,gparm,gradf,gradg)% Calculates solution to the parameter-dependent output-feedback problem.%% [gam,xmat,ymat,xyopt] = lpvsol(vlpv,nmeas,nctrl,opt,xyinit)% Calculates solution to the single quadratic Lyapunov output-feedback problem%% H-infinity LMI pole placement (Chilali & Gahinet, 1996) is available.% We can constrain Re(z) > -maxe for all (LTI) closed-loop poles.%% INPUTS: % vlpv: VARYING matrix containing N evaluations of the open-loop IC's:% vlpv = vpck([olic(parm1);...;olic(parmN)],1:N)% nmeas,nctrl: number of plant measurements and number of controls.% opt = [maxe gest]: parameters for avoiding "fast" LTI controller dynamics. % Re(z) > -maxe for all closed-loop poles, gest is a prior estimate % for gam. (OPTIONAL, enter [] for none) % xyinit: initial guess for the LMI variable. (OPTIONAL, enter [] for none)% vnu: (s x 1) [(s x 2)] matrix of [lower and upper] rate bounds on all s% parameters, with garbage entries for parameters without rate bounds:% -nu(i) <= parm(i) <= nu(i) OR nu(i,1) <= parm(i) <= nu(i,2) % NOTE: vnu can be parameter-varying, i.e. a VARYING matrix like vlpv.% NOTE: vnu with more than two columns is considered a% grid of parameter velocities, e.g. vertices of the velocity polytope. % fparm,gparm: contains basis function data for X & Y.% gradf,gradg: contains partial derivatives of basis functions for X & Y.% NOTE: if X (or Y) is to be parameter-independent, % then enter [] for fparm & gradf (gparm & gradg).%% OUTPUTS: % gam: The optimal performance level (gamma).% xmat,ymat: X_k's and Y_k's packed in varying matrices.% xyopt: The LMI variables (X,Y,gam) strung out as a vector.function [gam,xmat,ymat,xyopt] = ... lpvsol(vlpv,nmeas,nctrl,opt,xyinit,vnu,fparm,gparm,gradf,gradg);tstart = cputime;if all(nargin ~= [3 4 5 10]) disp('usage: [gam,xmat,ymat,xyopt] = lpvsol(vlpv,nmeas,nctrl,opt,xyinit,...') disp(' vnu,fparm,gparm,gradf,gradg)') returnenddisp(' Setting up LMIs...');if ~exist('opt') opt = [];endif isempty(opt) SLOW = 0;else SLOW = 1; maxe = opt(1); gest = opt(2);end% If vlpv is a system matrix, pack it as a varying matrix.[typ,dum2,dum3,npts1] = minfo(vlpv);if typ == 'syst' vlpv = vpck(vlpv,1); [typ,dum2,dum3,npts1] = minfo(vlpv);endviv = getiv(vlpv);if (nargin <= 5) % Fixed QLF PDLF = 0; SQLF = 1; viv = getiv(vlpv); vnu = vpck(zeros(npts1,1),viv); fparm = []; gparm = []; gradf = []; gradg = []; nparmx = 0; nparmy = 0; nvertx = 1; nverty = 1;else PDLF = 1; SQLF = 0;end% If vnu is a constant vector, pack it as a varying matrix.[typ,nparm,nbnds,npts6] = minfo(vnu);if typ ~= 'vary' [nparm,nbnds] = size(vnu); npts6 = npts1; vnu = vpck(kron(ones(npts6,1),vnu),viv);endif nbnds > 2 GRID_PARMV = 1;else GRID_PARMV = 0;endif (isempty(fparm)) fparm = vpck(ones(npts1,1),viv); gradf = vpck(zeros(npts1,nparm),viv);endif (isempty(gparm)) gparm = vpck(ones(npts1,1),viv); gradg = vpck(zeros(npts1,nparm),viv);end% Check that the number of grid points is consistent.[dum1,nbasisx,ckvx,npts2] = minfo(fparm);[dum1,nbasisy,ckvy,npts3] = minfo(gparm);if (ckvx ~= 1) | (ckvy ~= 1) error('Basis data should be column vectors.');end[dum1,nbasisgx,nparmgx,npts4] = minfo(gradf);[dum1,nbasisgy,nparmgy,npts5] = minfo(gradg);if (nparmgx ~= nparmgy) error('Number of parameters in basis gradient data inconsistent.');endif (nparmgx ~= nparm) error('Number of parameters in nu inconsistent with gradient data.');endif (nbasisgx ~= nbasisx) | (nbasisy ~= nbasisgy) error('Number of basis not consistent.');endif (npts1 ~= npts2) | (npts2 ~= npts3) | (npts3 ~= npts4) | ... (npts4 ~= npts5) | (npts5 ~= npts6) | (npts6 ~= npts1) disp(['There are ' int2str(npts1) ' points in vlpv']); disp(['There are ' int2str(npts2) ' points in fparm']); disp(['There are ' int2str(npts3) ' points in gparm']); disp(['There are ' int2str(npts4) ' points in gradf']); disp(['There are ' int2str(npts5) ' points in gradg']); disp(['There are ' int2str(npts6) ' points in vnu']); error('Number of grid points inconsistent');end grid_pts = npts1;% Identify the parameters whose rates are bounded (X and/or Y depend on them)% and are nonzero (vnu_i > 0)parmx = any(vunpck(gradf)) & any(vunpck(vtp(vnu)));parmy = any(vunpck(gradg)) & any(vunpck(vtp(vnu)));nparmx = sum(parmx);nparmy = sum(parmy);if GRID_PARMV & nparmx > 0 nvertx = nbnds;else nvertx = 2^nparmx;endif GRID_PARMV & nparmy > 0 nverty = nbnds;else nverty = 2^nparmy;end% Get matrix containing all combinations of +/- for nparm-dim vector.combmatx = corners(nparmx); % combmatx = 1 if nparmx = 0combmaty = corners(nparmy); % combmaty = 1 if nparmy = 0sys = xtracti(vlpv,1,1);[systype,no,ni,nx] = minfo(sys);ne = no-nmeas;ne1 = ne-nctrl;nd = ni-nctrl;nd1 = nd-nmeas;nvardec = nx*(nx+1)*(nbasisx+nbasisy)/2+1;nvarxy = nbasisx+nbasisy;% Setup lmi matrix variablessetlmis([])for i = 1:nbasisx X = lmivar(1,[nx 1]); endfor i = 1:nbasisy Y = lmivar(1,[nx 1]); endgamma = lmivar(1,[1 0]);% Add data to variable "lmis".for i = 1:grid_pts disp([' Adding data for grid point ' int2str(i) ' of ' int2str(grid_pts)]);% Get values of basis functions, gradient, and rate bound for parm_i. gdat = xtracti(gparm,i,1); fdat = xtracti(fparm,i,1); ggdat = xtracti(gradg,i,1); gfdat = xtracti(gradf,i,1); nu = xtracti(vnu,i,1);% Check for a two-sided rate bound, or just a bound on absolute value if nbnds == 1 nu = [-nu nu]; end% Get state-space data for grid point i sys = xtracti(vlpv,i,1); [a,b1,b2,c1,c2,d11] = transf(sys,nmeas,nctrl); [trow,tcol] = size(d11); if min(eig(eye(tcol)-d11'*d11)) <= 0 disp('I - D11*D11 < 0'); end b11 = b1(:,1:nd1); b12 = b1(:,nd1+1:nd); c11 = c1(1:ne1,:); c12 = c1(ne1+1:ne,:); d1111 = d11(1:ne1,1:nd1); d1112 = d11(1:ne1,nd1+1:nd); d1121 = d11(ne1+1:ne,1:nd1); d1122 = d11(ne1+1:ne,nd1+1:nd); ahat = a-b2*c12; atld = a-b12*c2; b1hat = b1-b2*[d1121 d1122]; c1tld = c1-[d1112;d1122]*c2; if PDLF indx = (nvertx+nverty+1)*(i-1); indx1 = indx+nverty; indx2 = (nvertx+nverty+1)*i; else indx = 2*(i-1); indx1 = indx+1; end if ne1 > 0 ezmaty = [eye(nx) zeros(nx,ne1)]; else ezmaty = 1; end for j = 1:nverty for k = 1:nbasisy if abs(gdat(k)) > eps lmiterm([indx+j 1 1 k+nbasisx],gdat(k)*[ahat;c11],ezmaty,'s');% lmiterm([indx+j 1 1 k+nbasisx],gdat(k),ahat','s');% if ne1 > 0% lmiterm([indx+j 2 1 k+nbasisx],gdat(k)*c11,1);% end end ly = 0; for l = 1:nparm if parmy(l) ~= 0 ly = ly + 1; if GRID_PARMV parmvl = nu(l,j); else parmvl = (nu(l,1)+nu(l,2))/2 + combmaty(j,ly)*(nu(l,1)-nu(l,2))/2; end if abs(ggdat(k,l)) > eps & abs(parmvl) > eps lmiterm([indx+j 1 1 k+nbasisx],-parmvl*ggdat(k,l)*ezmaty',ezmaty);% lmiterm([indx+j 1 1 k+nbasisx],-parmvl*ggdat(k,l),1); end end end end lmiterm([indx+j 1 1 nvarxy+1],-1,daug(b2*b2',eye(ne1))); lmiterm([indx+j 2 1 0],[b1hat' [d1111 d1112]']); lmiterm([indx+j 2 2 nvarxy+1],-1,1);% lmiterm([indx+j 1 1 nvarxy+1],-b2,b2');% if ne1 == 0% lmiterm([indx+j 2 1 0],b1hat');% lmiterm([indx+j 2 2 nvarxy+1],-1,1);% else% lmiterm([indx+j 2 2 nvarxy+1],-1,1);% lmiterm([indx+j 3 1 0],b1hat');% lmiterm([indx+j 3 2 0],[d1111 d1112]');% lmiterm([indx+j 3 3 nvarxy+1],-1,1);% end end if nd1 > 0 ezmatx = [eye(nx) zeros(nx,nd1)]; else ezmatx = 1; end for j = 1:nvertx for k = 1:nbasisx if abs(fdat(k)) > eps lmiterm([indx1+j 1 1 k],fdat(k)*[atld';b11'],ezmatx,'s');% lmiterm([indx1+j 1 1 k],fdat(k),atld,'s');% if nd1 > 0% lmiterm([indx1+j 2 1 k],fdat(k)*b11',1);% end end lx = 0; for l = 1:nparm if parmx(l) ~= 0 lx = lx + 1; if GRID_PARMV parmvl = nu(l,j); else parmvl = (nu(l,1)+nu(l,2))/2 + combmatx(j,lx)*(nu(l,1)-nu(l,2))/2; end if abs(gfdat(k,l)) > eps & abs(parmvl) > eps lmiterm([indx1+j 1 1 k],parmvl*gfdat(k,l)*ezmatx',ezmatx);% lmiterm([indx1+j 1 1 k],parmvl*gfdat(k,l),1); end end end end lmiterm([indx1+j 1 1 nvarxy+1],-1,daug(c2'*c2,eye(nd1))); lmiterm([indx1+j 2 1 0],[c1tld [d1111;d1121]]); lmiterm([indx1+j 2 2 nvarxy+1],-1,1);% lmiterm([indx1+j 1 1 nvarxy+1],-c2',c2);% if nd1 == 0% lmiterm([indx1+j 2 1 0],c1tld);% lmiterm([indx1+j 2 2 nvarxy+1],-1,1);% else% lmiterm([indx1+j 2 2 nvarxy+1],-1,1);% lmiterm([indx1+j 3 1 0],c1tld);% lmiterm([indx1+j 3 2 0],[d1111;d1121]);% lmiterm([indx1+j 3 3 nvarxy+1],-1,1);% end enddelt = 1e-6;% If PD X and Y if PDLF for k=1:nbasisy if abs(gdat(k)) > eps lmiterm([-indx2 1 1 k+nbasisx],gdat(k),1); end end for k=1:nbasisx if abs(fdat(k)) > eps lmiterm([-indx2 2 2 k],fdat(k),1); end end lmiterm([-indx2 2 1 0],1); lmiterm([indx2 1 1 0],delt); lmiterm([indx2 2 2 0],delt); if SLOW for k=1:nbasisy if abs(gdat(k)) > eps lmiterm([-indx2 1 1 k+nbasisx],gdat(k)/(2*maxe),ahat','s'); lmiterm([-indx2 2 1 k+nbasisx],-gdat(k)/(2*maxe*gest)*c11'*c11,1); end end for k=1:nbasisx if abs(fdat(k)) > eps lmiterm([-indx2 2 2 k],fdat(k)/(2*maxe),atld,'s'); lmiterm([-indx2 2 1 k],-fdat(k)/(2*maxe*gest),b11*b11'); end end lmiterm([-indx2 2 2 nvarxy+1],-1/maxe,c2'*c2); lmiterm([-indx2 1 1 nvarxy+1],-1/maxe,b2*b2'); lmiterm([-indx2 2 1 0],(b12*c2+b2*c12)'/(2*maxe)); end endend % grid point loop% If fixed X and Yif SQLF indx2 = 2*grid_pts+1; lmiterm([-indx2 1 1 2],1,1); lmiterm([-indx2 2 2 1],1,1); lmiterm([-indx2 2 1 0],1); lmiterm([indx2 1 1 0],delt); lmiterm([indx2 2 2 0],delt); if SLOW lmiterm([-indx2 1 1 2],1/(2*maxe),ahat','s'); lmiterm([-indx2 2 1 2],-1/(2*maxe*gest)*c11'*c11,1); lmiterm([-indx2 2 2 1],1/(2*maxe),atld,'s'); lmiterm([-indx2 2 1 1],-1/(2*maxe*gest),b11*b11'); lmiterm([-indx2 2 2 nvarxy+1],-1/maxe,c2'*c2); lmiterm([-indx2 1 1 nvarxy+1],-1/maxe,b2*b2'); lmiterm([-indx2 2 1 0],(b12*c2+b2*c12)'/(2*maxe)); endendlmis=getlmis; % Use initial condition if given.if ~exist('xyinit') xyinit = [];endif isempty(xyinit) decinit = [];else decinit = xyinit;endcobj = zeros(nx*(nx+1)/2*nvarxy,1);cobj = [cobj;1];% Save data to file and display setup timedatesim = date;timesim = clock;ttwo = cputime;dtime = ttwo-tstart;if dtime < 60 disp(['Done. CPU Time = ' num2str(dtime) ' sec']);elseif dtime < 3600 disp(['Done. CPU Time = ' num2str(dtime/60) ' min']);else disp(['Done. CPU Time = ' num2str(dtime/3600) ' hrs!!']);end % Call MINCXtic[copt,xyopt] = mincx(lmis,cobj,[1e-2 200 1e7 10 0],decinit,0);toc% Calculate solution time and display results.tthre = cputime;dtime1 = tthre-ttwo;dtime2 = tthre-tstart;timestr = 'Done with optimization. CPU Time (LINOBJ) = ';if dtime1 < 60 disp([timestr num2str(dtime1) ' sec']);elseif dtime2 < 3600 disp([timestr num2str(dtime1/60) ' min']);else disp([timestr num2str(dtime1/3600) ' hrs!!']);endif dtime2 < 60 disp([' CPU Time (total) = ' num2str(dtime2) ' sec']);elseif dtime2 < 3600 disp([' CPU Time (total) = ' num2str(dtime2/60) ' min']);else disp([' CPU Time (total) = ' num2str(dtime2/3600) ' hrs!!']);end if isempty(copt) disp(['Sorry. No feasible solution found.']); return;end % Form output argumentsgam = xyopt(nvardec);xmat = [];ymat = [];for i = 1:nbasisx xmat = [xmat;dec2mat(lmis,xyopt,i)];endfor i = 1:nbasisy ymat = [ymat;dec2mat(lmis,xyopt,i+nbasisx)];endif PDLF xmat=vpck(xmat,[1:nbasisx]'); ymat=vpck(ymat,[1:nbasisy]');end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -