📄 outcar
字号:
vasp.4.4.5 29Jan01 serial version-------------------------------------------------------------------------------------------------------- INCAR: POTCAR: US Mg POTCAR: US O POTCAR: US Mg VRHFIN =Mg: s2p0 LEXCH = 91 EATOM = 41.4683 eV, 3.0478 Ry TITEL = US Mg LULTRA = T use ultrasoft PP ? IUNSCR = 1 unscreen: 0-lin 1-nonlin 2-no RPACOR = -.500 partial core radius POMASS = 24.305; ZVAL = 2.000 mass and valenz RCORE = 2.880 outmost cutoff radius RWIGS = 2.880; RWIGS = 1.524 wigner-seitz radius (au A) ENMAX = 106.148; ENMIN = 79.611 eV EAUG = 175.270 ICORE = 2 local potential LCOR = T correct aug charges RMAX = 4.475 core radius for proj-oper QCUT = -2.793; QGAM = 5.586 optimization parameters Description l E TYP RCUT TYP RCUT 0 .000 15 2.570 23 2.880 0 2.000 15 2.570 23 2.880 1 .000 15 2.570 23 2.880 1 2.000 15 2.570 23 2.880 2 .000 15 2.340 15 2.340 local pseudopotential read in partial core-charges read in atomic valenz-charges read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in augmentation charges read in number of l-projection operators is LMAX = 4 number of lm-projection operators is LMMAX = 8 POTCAR: US O VRHFIN =O: s2p4 LEXCH = 91 EATOM = 429.1268 eV, 31.5399 Ry TITEL = US O LULTRA = T use ultrasoft PP ? IUNSCR = 0 unscreen: 0-lin 1-nonlin 2-no RPACOR = .000 partial core radius POMASS = 16.000; ZVAL = 6.000 mass and valenz RCORE = 1.550 outmost cutoff radius RWIGS = 1.400; RWIGS = .741 wigner-seitz radius (au A) ENMAX = 395.994; ENMIN = 296.995 eV EAUG = 700.000 ICORE = 2 local potential LCOR = T correct aug charges RMAX = 2.317 core radius for proj-oper QCUT = -5.395; QGAM = 10.790 optimization parameters Description l E TYP RCUT TYP RCUT 0 .000 15 1.130 23 1.400 0 .000 15 1.130 23 1.400 1 .000 15 1.130 23 1.550 1 .000 15 1.130 23 1.550 2 .000 7 1.550 7 1.550 local pseudopotential read in atomic valenz-charges read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 0 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in non local Contribution for L= 1 read in real space projection operators read in augmentation charges read in number of l-projection operators is LMAX = 4 number of lm-projection operators is LMMAX = 8 US Mg : energy of atom 1 EATOM= -41.4683 kinetic energy error for atom= 0.0000 (will be added to EATOM!!) US O : energy of atom 2 EATOM= -429.1268 kinetic energy error for atom= 0.0194 (will be added to EATOM!!) EXHCAR: internal setup exchange correlation table for LEXCH = 7 RHO(1)= 0.500 N(1) = 2000 RHO(2)= 100.500 N(2) = 4000 POSCAR: bulk MgO -> Species: Mg O positions in direct lattice velocities in cartesian coordinates No initial velocities read in-------------------------------------------------------------------------------------------------------- ion position nearest neighbor table 1 0.000 0.000 0.000- 2 2.10 2 2.10 2 2.10 2 2.10 2 2.10 2 2.10 2 0.500 0.500 0.500- 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 1 2.10 LATTYP: Found a face centered cubic cell. ALAT = 4.2000000000 Lattice vectors: A1 = ( 0.0000000000, 2.1000000000, 2.1000000000) A2 = ( 2.1000000000, 0.0000000000, 2.1000000000) A3 = ( 2.1000000000, 2.1000000000, 0.0000000000) Subroutine PRICEL returns: Original cell was already a primitive cell. Analysis of symmetry for initial positions (statically): Routine SETGRP: Setting up the symmetry group for a face centered cubic supercell. Subroutine GETGRP returns: Found 48 space group operations (whereof 48 operations were pure point group operations) out of a pool of 48 trial point group operations.The static configuration has the point symmetry O_h .Analysis of symmetry for dynamics (positions and initial velocities): Subroutine DYNSYM returns: Found 48 space group operations (whereof 48 operations were pure point group operations) out of a pool of 48 trial space group operations (whereof 48 operations were pure point group operations) and found also 1 'primitive' translationsThe dynamic configuration has the point symmetry O_h . KPOINTS: created by tetr k-points in reciprocal lattice-------------------------------------------------------------------------------------------------------- Dimension of arrays: k-Points NKPTS = 8 number of bands NBANDS= 8 number of dos NEDOS = 301 number of ions NIONS = 2 non local maximal LDIM = 4 non local SUM 2l+1 LMDIM = 8 total plane-waves NPLWV = 13824 max r-space proj IRMAX = 1 max aug-charges IRDMAX= 40291 dimension x,y,z NGX = 24 NGY = 24 NGZ = 24 dimension x,y,z NGXF= 36 NGYF= 36 NGZF= 36 support grid NGXF= 36 NGYF= 36 NGZF= 36 ions per type = 1 1 NGX,Y,Z is equivalent to a cutoff of 13.43, 13.43, 13.43 a.u. NGXF,Y,Z is equivalent to a cutoff of 20.15, 20.15, 20.15 a.u. I would recommend the setting: dimension x,y,z NGX = 22 NGY = 22 NGZ = 22 SYSTEM = H2O molecule POSCAR = bulk MgO -> Species: Mg O Startparameter for this run: NWRITE = 2; LPETIM=F write-flag & timer PREC = high medium, high low ISTART = 1 job : 0-new 1-cont 2-samecut ICHARG = 0 charge: 1-file 2-atom 10-const ISPIN = 1 spin polarized calculation? INIWAV = 1 electr: 0-lowe 1-rand 2-diag Electronic Relaxation 1 ENCUT = 495.0 eV 36.38 Ry 6.03 a.u. 5.39 5.39 5.39*2*pi/ulx,y,z ENINI = 495.0 initial cutoff ENAUG = 700.0 eV augmentation charge cutoff NELM = 60; NELMIN= 2; NELMDL= 0 # of ELM steps EDIFF = 0.1E-04 stopping-criterion for ELM LREAL = F real-space projection LCOMPAT= F compatible to vasp.3.2 ROPT = 0.00000 0.00000 Ionic relaxation EDIFFG = -.1E-01 stopping-criterion for IOM NSW = 0 number of steps for IOM NBLOCK = 1; KBLOCK = 1 inner block; outer block IBRION = -1 ionic relax: 0-MD 1-quasi-New 2-CG ISIF = 0 stress and relaxation IWAVPR = 0 prediction: 0-non 1-charg 2-wave 3-comb ISYM = 1 0-nonsym 1-usesym 2-fastsym LCORR = T Harris-Foulkes like correction to forces POTIM = 0.05 time-step for ionic-motion TEIN = 0.0 initial temperature TEBEG = 0.0; TEEND = 0.0 temperature during run SMASS = -3.00 Nose mass-parameter (am) estimated Nose-frequenzy (Omega) = 0.10E-29 period in steps =****** mass= -0.202E-27a.u. NPACO = 256; APACO = 16.0 distance and # of slots for P.C. PSTRESS= 0.0 pullay stress Mass of Ions in am POMASS = 24.31 16.00 Ionic Valenz ZVAL = 2.00 6.00 Atomic Wigner-Seitz radii RWIGS = 1.00 1.00 NELECT = 8.0000 total number of electrons NUPDOWN= 0.0000 fix difference up-down DOS related values: EMIN = -30.00; EMAX = 10.00 energy-range for DOS ISMEAR = 0; SIGMA = 0.20 broadening in eV -4-tet -1-fermi 0-gaus Electronic relaxation 2 (details) IALGO = 48 algorithm LDIAG = T sub-space diagonalisation IMIX = 4 mixing-type and parameters AMIX = 0.80; BMIX = 1.00 AMIX_MAG = 3.20; BMIX_MAG = 1.00 AMIN = 0.10 WC = 100.; INIMIX= 1; MIXPRE= 1 Intra band minimization: WEIMIN = 0.0000 energy-eigenvalue tresh-hold EBREAK = 0.31E-06 absolut break condition DEPER = 0.30 relativ break condition TIME = 0.10 timestep for ELM volume/ion in A,a.u. = 9.26 62.50 Fermi-wavevector in a.u.,eV,Ry = 1.237491 20.835758 1.531385 Write flags LWAVE = T write WAVECAR LCHARG = T write CHGCAR LVTOT = F write LOCPOT, local potential LELF = F write electronic localiz. function (ELF) LORBIT = 0 0 simple, 1 ext, 2 COOP (PROOUT)-------------------------------------------------------------------------------------------------------- Static calculation charge density will be updated during run non-spin polarized calculation RMM-DIIS sequential band-by-band performe sub-space diagonalisation before iterative eigenvector-optimisation modified Broyden-mixing scheme, WC = 100.0 initial mixing is a Kerker type mixing with AMIX = 0.8000 and BMIX = 1.0000 Hartree-type preconditioning will be used using additional bands 4 reciprocal scheme for non local part use partial core corrections calculate Harris-corrections to forces (improved forces if not selfconsistent) use gradient corrections use of overlap-Matrix (Vanderbilt PP) Gauss-broadening in eV SIGMA = 0.20-------------------------------------------------------------------------------------------------------- energy-cutoff : 494.99 volume of cell : 18.52 direct lattice vectors reciprocal lattice vectors 0.000000000 2.100000000 2.100000000 -0.238095238 0.238095238 0.238095238 2.100000000 0.000000000 2.100000000 0.238095238 -0.238095238 0.238095238 2.100000000 2.100000000 0.000000000 0.238095238 0.238095238 -0.238095238 length of vectors 2.969848481 2.969848481 2.969848481 0.412393049 0.412393049 0.412393049 old parameters found on file WAVECAR: energy-cutoff : 494.99 volume of cell : 18.52 direct lattice vectors reciprocal lattice vectors 0.000000000 2.100000000 2.100000000 -0.238095238 0.238095238 0.238095238 2.100000000 0.000000000 2.100000000 0.238095238 -0.238095238 0.238095238 2.100000000 2.100000000 0.000000000 0.238095238 0.238095238 -0.238095238 length of vectors k-points in units of 2pi/SCALE and weight: created by tetr 0.00000000 0.00000000 0.00000000 0.016 0.05952381 0.05952381 -0.05952381 0.125 0.00000000 0.11904762 0.00000000 0.094 0.11904762 0.11904762 -0.11904762 0.063 0.11904762 0.11904762 0.00000000 0.188 0.05952381 0.17857143 -0.05952381 0.375 0.23809524 0.00000000 0.00000000 0.047 0.23809524 0.11904762 0.00000000 0.094 k-points in reciprocal lattice and weights: created by tetr 0.00000000 0.00000000 0.00000000 0.016 0.00000000 0.00000000 0.25000000 0.125 0.25000000 0.00000000 0.25000000 0.094 0.00000000 0.00000000 0.50000000 0.063 0.25000000 0.25000000 0.50000000 0.188 0.25000000 0.00000000 0.50000000 0.375 0.00000000 0.50000000 0.50000000 0.047 0.25000000 0.50000000 0.75000000 0.094 position of ions in fractional coordinates (direct lattice) 0.00000000 0.00000000 0.00000000 0.50000000 0.50000000 0.50000000 position of ions in cartesian coordinates (Angst): 0.00000000 0.00000000 0.00000000 2.10000000 2.10000000 2.10000000-------------------------------------------------------------------------------------------------------- k-point 1 : 0.00000.00000.0000 plane waves: 459 k-point 2 : 0.00000.00000.2500 plane waves: 477 k-point 3 : 0.25000.00000.2500 plane waves: 456 k-point 4 : 0.00000.00000.5000 plane waves: 464 k-point 5 : 0.25000.25000.5000 plane waves: 463 k-point 6 : 0.25000.00000.5000 plane waves: 459 k-point 7 : 0.00000.50000.5000 plane waves: 468 k-point 8 : 0.25000.50000.7500 plane waves: 464 maximum number of plane-waves: 477 maximal index in each direction:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -