⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 geometryr.cpp

📁 该程序实现FIRE足球机器人竞赛中的3:3比赛源码
💻 CPP
📖 第 1 页 / 共 4 页
字号:
	//          ( 1 - dFrac ) * this + dFrac * p	return ( ( *this ) * ( 1.0 - dFrac ) + ( p * dFrac ) );}/*! This method converts a polar representation of a VecPosition into aCartesian representation.\param dMag a double representing the polar r-coordinate, i.e. the distancefrom the point to the origin\param ang the angle that the polar vector Makes with the x-axis, i.e. thepolar phi-coordinate\return the result of converting the given polar representation into aCartesian representation thus yielding a Cartesian VecPosition */VecPosition VecPosition::GetVecPositionFromPolar( double dMag, AngRad ang ){	// cos(phi) = x/r <=> x = r*cos(phi); sin(phi) = y/r <=> y = r*sin(phi)	return ( VecPosition( dMag * cos( ang ), dMag * sin( ang ) ) );}/*! This method Normalizes an angle. This means that the resulting angle liesbetween -180 and 180 degrees.\param angle the angle which must be Normalized\return the result of normalizing the given angle */AngDeg VecPosition::NormalizeAngle( AngRad angle ){	while( angle > M_PI  ) angle -= 2*M_PI;	while( angle < - M_PI  ) angle += 2*M_PI;	return ( angle );}/******************************************************************************//*********************** CLASS GEOMETRY ***************************************//******************************************************************************//*! A geometric series is one in which there is a constant ratio between eachelement and the one preceding it. This method determines thelength of a geometric series given its first element, the sum of theelements in the series and the constant ratio between the elements.Normally: s = a + ar + ar^2 + ...  + ar^nNow: dSum = dFirst + dFirst*dRatio + dFirst*dRatio^2 + .. + dFist*dRatio^n\param dFirst first term of the series\param dRatio ratio with which the the first term is multiplied\param dSum the total sum of all the serie\return the length(n in above example) of the series */double Geometry::GetLengthGeomSeries( double dFirst, double dRatio, double dSum ){	// s = a + ar + ar^2 + .. + ar^n-1 and thus sr = ar + ar^2 + .. + ar^n	// subtract: sr - s = - a + ar^n) =>  s(1-r)/a + 1 = r^n = temp	// log r^n / n = n log r / log r = n = length	double temp = (dSum * ( dRatio - 1 ) / dFirst) + 1;	if( temp <= 0 )	return -1.0;	return log( temp ) / log( dRatio ) ;}/*! A geometric series is one in which there is a constant ratio between eachelement and the one preceding it. This method determines the sum of ageometric series given its first element, the ratio and the number of stepsin the seriesNormally: s = a + ar + ar^2 + ...  + ar^nNow: dSum = dFirst + dFirst*dRatio + ... + dFirst*dRatio^dSteps\param dFirst first term of the series\param dRatio ratio with which the the first term is multiplied\param dSum the number of steps to be taken into account\return the sum of the series */double Geometry::GetSumGeomSeries( double dFirst, double dRatio, double dLength){	// s = a + ar + ar^2 + .. + ar^n-1 and thus sr = ar + ar^2 + .. + ar^n	// subtract: s - sr = a - ar^n) =>  s = a(1-r^n)/(1-r)	return dFirst * ( 1 - pow( dRatio, dLength ) ) / ( 1 - dRatio ) ;}/*! A geometric series is one in which there is a constant ratio between eachelement and the one preceding it. This method determines the sum of aninfinite geometric series given its first element and the constant ratiobetween the elements. Note that such an infinite series will only convergewhen 0<r<1.Normally: s = a + ar + ar^2 + ar^3 + ....Now: dSum = dFirst + dFirst*dRatio + dFirst*dRatio^2...\param dFirst first term of the series\param dRatio ratio with which the the first term is multiplied\return the sum of the series */double Geometry::GetSumInfGeomSeries( double dFirst, double dRatio ){	// s = a(1-r^n)/(1-r) with n->inf and 0<r<1 => r^n = 0	return dFirst / ( 1 - dRatio );}/*! A geometric series is one in which there is a constant ratio between eachelement and the one preceding it. This method determines the first elementof a geometric series given its element, the ratio and the number of stepsin the seriesNormally: s = a + ar + ar^2 + ...  + ar^nNow: dSum = dFirst + dFirst*dRatio + ... + dFirst*dRatio^dSteps\param dSum sum of the series\param dRatio ratio with which the the first term is multiplied\param dSum the number of steps to be taken into account\return the first element (a) of a serie */double Geometry::GetFirstGeomSeries( double dSum, double dRatio, double dLength){	// s = a + ar + ar^2 + .. + ar^n-1 and thus sr = ar + ar^2 + .. + ar^n	// subtract: s - sr = a - ar^n) =>  s = a(1-r^n)/(1-r) => a = s*(1-r)/(1-r^n)	return dSum *  ( 1 - dRatio )/( 1 - pow( dRatio, dLength ) ) ;}/*! A geometric series is one in which there is a constant ratio between eachelement and the one preceding it. This method determines the first elementof an infinite geometric series given its first element and the constantratio between the elements. Note that such an infinite series will onlyconverge when 0<r<1.Normally: s = a + ar + ar^2 + ar^3 + ....Now: dSum = dFirst + dFirst*dRatio + dFirst*dRatio^2...\param dSum sum of the series\param dRatio ratio with which the the first term is multiplied\return the first term of the series */double Geometry::GetFirstInfGeomSeries( double dSum, double dRatio ){	// s = a(1-r^n)/(1-r) with r->inf and 0<r<1 => r^n = 0 => a = s ( 1 - r)	return dSum * ( 1 - dRatio );}/*! This method performs the abc formula (Pythagoras' Theorem) on the givenparameters and puts the result in *s1 en *s2. It returns the number offound coordinates.\param a a parameter in abc formula\param b b parameter in abc formula\param c c parameter in abc formula\param *s1 first result of abc formula\param *s2 second result of abc formula\return number of found x-coordinates */int Geometry::AbcFormula(double a, double b, double c, double *s1, double *s2){	double dDiscr = b*b - 4*a*c;       // discriminant is b^2 - 4*a*c	if (fabs(dDiscr) < EPS )       // if discriminant = 0	{		*s1 = -b / (2 * a);              //  only one solution		return 1;	}	else if (dDiscr < 0)               // if discriminant < 0	return 0;                        //  no solutions	else                               // if discriminant > 0	{		dDiscr = sqrt(dDiscr);           //  two solutions		*s1 = (-b + dDiscr ) / (2 * a);		*s2 = (-b - dDiscr ) / (2 * a);		return 2;	}}/******************************************************************************//********************** CLASS CIRCLE ******************************************//******************************************************************************//*! This is the constructor of a circle.\param pos first point that defines the center of circle\param dR the radius of the circle\return circle with pos as center and radius as radius*/Circle::Circle( VecPosition pos, double dR ){	SetCircle( pos, dR );}/*! This is the constructor of a circle which initializes a circle with aradius of zero. */Circle::Circle( ){	SetCircle( VecPosition(-1000.0,-1000.0), 0);}/*! This method prints the circle information to the specified output streamin the following format: "c: (c_x,c_y), r: rad" where (c_x,c_y) denotesthe center of the circle and rad the radius.\param os output stream to which output is written. */void Circle::Show(){	printf("c:");	m_posCenter.Show();	printf(", r: %5.2f \n", m_dRadius);}/*! This method Sets the values of the circle.\param pos new center of the circle\param dR new radius of the circle( > 0 )\return bool indicating whether radius was Set */bool Circle::SetCircle( VecPosition pos, double dR ){	SetCenter( pos );	return SetRadius( dR  );}/*! This method Sets the radius of the circle.\param dR new radius of the circle ( > 0 )\return bool indicating whether radius was Set */bool Circle::SetRadius( double dR ){	if( dR > 0 )	{		m_dRadius = dR;		return true;	}	else	{		m_dRadius = 0.0;		return false;	}}/*! This method returns the radius of the circle.\return radius of the circle */double Circle::GetRadius(){	return m_dRadius;}/*! This method Sets the center of the circle.\param pos new center of the circle\return bool indicating whether center was Set */bool Circle::SetCenter( VecPosition pos ){	m_posCenter = pos;	return true;}/*! This method returns the center of the circle.\return center of the circle */VecPosition Circle::GetCenter(){	return m_posCenter;}/*! This method returns the circumference of the circle.\return circumference of the circle */double Circle::GetCircumference(){	return 2.0*M_PI*GetRadius();}/*! This method returns the area inside the circle.\return area inside the circle */double Circle::GetArea(){	return M_PI*GetRadius()*GetRadius();}/*! This method returns a boolean that indicates whether 'pos' is located insidethe circle.\param pos position of which should be checked whether it is located in thecircle\return bool indicating whether pos lies inside the circle */bool Circle::IsInside( VecPosition pos ){	return m_posCenter.GetDistanceTo( pos ) < GetRadius() ;}/*! This method returns the two possible intersection points between twocircles. This method returns the number of solutions that were found.\param c circle with which intersection should be found\param p1 will be filled with first solution\param p2 will be filled with second solution\return number of solutions. */int Circle::GetIntersectionPoints( Circle c, VecPosition *p1, VecPosition *p2){	double x0, y0, r0;	double x1, y1, r1;	x0 = GetCenter( ).GetX();	y0 = GetCenter( ).GetY();	r0 = GetRadius( );	x1 = c.GetCenter( ).GetX();	y1 = c.GetCenter( ).GetY();	r1 = c.GetRadius( );	double      d, dx, dy, h, a, x, y, p2_x, p2_y;	// first Calculate distance between two centers circles P0 and P1.	dx = x1 - x0;	dy = y1 - y0;	d = sqrt(dx*dx + dy*dy);	// Normalize differences	dx /= d; dy /= d;	// a is distance between p0 and point that is the intersection point P2	// that intersects P0-P1 and the line that crosses the two intersection	// points P3 and P4.	// Define two triangles: P0,P2,P3 and P1,P2,P3.	// with distances a, h, r0 and b, h, r1 with d = a + b	// We know a^2 + h^2 = r0^2 and b^2 + h^2 = r1^2 which then gives	// a^2 + r1^2 - b^2 = r0^2 with d = a + b ==> a^2 + r1^2 - (d-a)^2 = r0^2	// ==> r0^2 + d^2 - r1^2 / 2*d	a = (r0*r0 + d*d - r1*r1) / (2.0 * d);	// h is then a^2 + h^2 = r0^2 ==> h = sqrt( r0^2 - a^2 )	double      arg = r0*r0 - a*a;	h = (arg > 0.0) ? sqrt(arg) : 0.0;	// First Calculate P2	p2_x = x0 + a * dx;	p2_y = y0 + a * dy;	// and finally the two intersection points	x =  p2_x - h * dy;	y =  p2_y + h * dx;	p1->SetVecPosition( x, y );	x =  p2_x + h * dy;	y =  p2_y - h * dx;	p2->SetVecPosition( x, y );	return (arg < 0.0) ? 0 : ((arg == 0.0 ) ? 1 :  2);}/*! This method returns the size of the intersection area of two circles.\param c circle with which intersection should be determined\return size of the intersection areACT-> */double Circle::GetIntersectionArea( Circle c ){	VecPosition pos1, pos2, pos3;	double d, h, dArea;	AngDeg ang;	d = GetCenter().GetDistanceTo( c.GetCenter() ); // dist between two centers	if( d > c.GetRadius() + GetRadius() )           // larger than sum radii	return 0.0;                                   // circles do not intersect	if( d <= fabs(c.GetRadius() - GetRadius() ) )   // one totally in the other	{		double dR = Maths::Min( c.GetRadius(), GetRadius() );// return area smallest circle		return M_PI*dR*dR;	}	int iNrSol = GetIntersectionPoints( c, &pos1, &pos2 );	if( iNrSol != 2 )	return 0.0;	// the intersection area of two circles can be divided into two segments:	// left and right of the line between the two intersection points p1 and p2.	// The outside area of each segment can be Calculated by taking the part	// of the circle pie excluding the triangle from the center to the	// two intersection points.	// The pie equals pi*r^2 * rad(2*ang) / 2*pi = 0.5*rad(2*ang)*r^2 with ang	// the angle between the center c of the circle and one of the two	// intersection points. Thus the angle between c and p1 and c and p3 where	// p3 is the point that lies halfway between p1 and p2.	// This can be Calculated using ang = asin( d / r ) with d the distance	// between p1 and p3 and r the radius of the circle.	// The area of the triangle is 2*0.5*h*d.	pos3 = pos1.GetVecPositionOnLineFraction( pos2, 0.5 );	d = pos1.GetDistanceTo( pos3 );	h = pos3.GetDistanceTo( GetCenter() );	ang = asin( d / GetRadius() );	dArea = ang*GetRadius()*GetRadius();	dArea = dArea - d*h;	// and now for the other segment the same story	h = pos3.GetDistanceTo( c.GetCenter() );	ang = asin( d / c.GetRadius() );	dArea = dArea + ang*c.GetRadius()*c.GetRadius();	dArea = dArea - d*h;	return dArea;}/******************************************************************************//***********************  CLASS LINE *******************************************//******************************************************************************//*! This constructor creates a line by given the three coefficents of the line.A line is specified by the formula ay + bx + c = 0.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -