📄 imgresample.c
字号:
/* * High quality image resampling with polyphase filters * Copyright (c) 2001 Fabrice Bellard. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /** * @file imgresample.c * High quality image resampling with polyphase filters . */ #include "avcodec.h"#include "dsputil.h"#ifdef USE_FASTMEMCPY#include "fastmemcpy.h"#endif#define NB_COMPONENTS 3#define PHASE_BITS 4#define NB_PHASES (1 << PHASE_BITS)#define NB_TAPS 4#define FCENTER 1 /* index of the center of the filter *///#define TEST 1 /* Test it */#define POS_FRAC_BITS 16#define POS_FRAC (1 << POS_FRAC_BITS)/* 6 bits precision is needed for MMX */#define FILTER_BITS 8#define LINE_BUF_HEIGHT (NB_TAPS * 4)struct ImgReSampleContext { int iwidth, iheight, owidth, oheight; int topBand, bottomBand, leftBand, rightBand; int padtop, padbottom, padleft, padright; int pad_owidth, pad_oheight; int h_incr, v_incr; int16_t h_filters[NB_PHASES][NB_TAPS] __align8; /* horizontal filters */ int16_t v_filters[NB_PHASES][NB_TAPS] __align8; /* vertical filters */ uint8_t *line_buf;};void av_build_filter(int16_t *filter, double factor, int tap_count, int phase_count, int scale, int type);static inline int get_phase(int pos){ return ((pos) >> (POS_FRAC_BITS - PHASE_BITS)) & ((1 << PHASE_BITS) - 1);}/* This function must be optimized */static void h_resample_fast(uint8_t *dst, int dst_width, const uint8_t *src, int src_width, int src_start, int src_incr, int16_t *filters){ int src_pos, phase, sum, i; const uint8_t *s; int16_t *filter; src_pos = src_start; for(i=0;i<dst_width;i++) {#ifdef TEST /* test */ if ((src_pos >> POS_FRAC_BITS) < 0 || (src_pos >> POS_FRAC_BITS) > (src_width - NB_TAPS)) av_abort();#endif s = src + (src_pos >> POS_FRAC_BITS); phase = get_phase(src_pos); filter = filters + phase * NB_TAPS;#if NB_TAPS == 4 sum = s[0] * filter[0] + s[1] * filter[1] + s[2] * filter[2] + s[3] * filter[3];#else { int j; sum = 0; for(j=0;j<NB_TAPS;j++) sum += s[j] * filter[j]; }#endif sum = sum >> FILTER_BITS; if (sum < 0) sum = 0; else if (sum > 255) sum = 255; dst[0] = sum; src_pos += src_incr; dst++; }}/* This function must be optimized */static void v_resample(uint8_t *dst, int dst_width, const uint8_t *src, int wrap, int16_t *filter){ int sum, i; const uint8_t *s; s = src; for(i=0;i<dst_width;i++) {#if NB_TAPS == 4 sum = s[0 * wrap] * filter[0] + s[1 * wrap] * filter[1] + s[2 * wrap] * filter[2] + s[3 * wrap] * filter[3];#else { int j; uint8_t *s1 = s; sum = 0; for(j=0;j<NB_TAPS;j++) { sum += s1[0] * filter[j]; s1 += wrap; } }#endif sum = sum >> FILTER_BITS; if (sum < 0) sum = 0; else if (sum > 255) sum = 255; dst[0] = sum; dst++; s++; }}#ifdef HAVE_MMX#include "i386/mmx.h"#define FILTER4(reg) \{\ s = src + (src_pos >> POS_FRAC_BITS);\ phase = get_phase(src_pos);\ filter = filters + phase * NB_TAPS;\ movq_m2r(*s, reg);\ punpcklbw_r2r(mm7, reg);\ movq_m2r(*filter, mm6);\ pmaddwd_r2r(reg, mm6);\ movq_r2r(mm6, reg);\ psrlq_i2r(32, reg);\ paddd_r2r(mm6, reg);\ psrad_i2r(FILTER_BITS, reg);\ src_pos += src_incr;\}#define DUMP(reg) movq_r2m(reg, tmp); printf(#reg "=%016Lx\n", tmp.uq);/* XXX: do four pixels at a time */static void h_resample_fast4_mmx(uint8_t *dst, int dst_width, const uint8_t *src, int src_width, int src_start, int src_incr, int16_t *filters){ int src_pos, phase; const uint8_t *s; int16_t *filter; mmx_t tmp; src_pos = src_start; pxor_r2r(mm7, mm7); while (dst_width >= 4) { FILTER4(mm0); FILTER4(mm1); FILTER4(mm2); FILTER4(mm3); packuswb_r2r(mm7, mm0); packuswb_r2r(mm7, mm1); packuswb_r2r(mm7, mm3); packuswb_r2r(mm7, mm2); movq_r2m(mm0, tmp); dst[0] = tmp.ub[0]; movq_r2m(mm1, tmp); dst[1] = tmp.ub[0]; movq_r2m(mm2, tmp); dst[2] = tmp.ub[0]; movq_r2m(mm3, tmp); dst[3] = tmp.ub[0]; dst += 4; dst_width -= 4; } while (dst_width > 0) { FILTER4(mm0); packuswb_r2r(mm7, mm0); movq_r2m(mm0, tmp); dst[0] = tmp.ub[0]; dst++; dst_width--; } emms();}static void v_resample4_mmx(uint8_t *dst, int dst_width, const uint8_t *src, int wrap, int16_t *filter){ int sum, i, v; const uint8_t *s; mmx_t tmp; mmx_t coefs[4]; for(i=0;i<4;i++) { v = filter[i]; coefs[i].uw[0] = v; coefs[i].uw[1] = v; coefs[i].uw[2] = v; coefs[i].uw[3] = v; } pxor_r2r(mm7, mm7); s = src; while (dst_width >= 4) { movq_m2r(s[0 * wrap], mm0); punpcklbw_r2r(mm7, mm0); movq_m2r(s[1 * wrap], mm1); punpcklbw_r2r(mm7, mm1); movq_m2r(s[2 * wrap], mm2); punpcklbw_r2r(mm7, mm2); movq_m2r(s[3 * wrap], mm3); punpcklbw_r2r(mm7, mm3); pmullw_m2r(coefs[0], mm0); pmullw_m2r(coefs[1], mm1); pmullw_m2r(coefs[2], mm2); pmullw_m2r(coefs[3], mm3); paddw_r2r(mm1, mm0); paddw_r2r(mm3, mm2); paddw_r2r(mm2, mm0); psraw_i2r(FILTER_BITS, mm0); packuswb_r2r(mm7, mm0); movq_r2m(mm0, tmp); *(uint32_t *)dst = tmp.ud[0]; dst += 4; s += 4; dst_width -= 4; } while (dst_width > 0) { sum = s[0 * wrap] * filter[0] + s[1 * wrap] * filter[1] + s[2 * wrap] * filter[2] + s[3 * wrap] * filter[3]; sum = sum >> FILTER_BITS; if (sum < 0) sum = 0; else if (sum > 255) sum = 255; dst[0] = sum; dst++; s++; dst_width--; } emms();}#endif#ifdef HAVE_ALTIVECtypedef union { vector unsigned char v; unsigned char c[16];} vec_uc_t;typedef union { vector signed short v; signed short s[8];} vec_ss_t;void v_resample16_altivec(uint8_t *dst, int dst_width, const uint8_t *src, int wrap, int16_t *filter){ int sum, i; const uint8_t *s; vector unsigned char *tv, tmp, dstv, zero; vec_ss_t srchv[4], srclv[4], fv[4]; vector signed short zeros, sumhv, sumlv; s = src; for(i=0;i<4;i++) { /* The vec_madds later on does an implicit >>15 on the result. Since FILTER_BITS is 8, and we have 15 bits of magnitude in a signed short, we have just enough bits to pre-shift our filter constants <<7 to compensate for vec_madds. */ fv[i].s[0] = filter[i] << (15-FILTER_BITS); fv[i].v = vec_splat(fv[i].v, 0); } zero = vec_splat_u8(0); zeros = vec_splat_s16(0); /* When we're resampling, we'd ideally like both our input buffers, and output buffers to be 16-byte aligned, so we can do both aligned reads and writes. Sadly we can't always have this at the moment, so we opt for aligned writes, as unaligned writes have a huge overhead. To do this, do enough scalar resamples to get dst 16-byte aligned. */ i = (-(int)dst) & 0xf; while(i>0) { sum = s[0 * wrap] * filter[0] + s[1 * wrap] * filter[1] + s[2 * wrap] * filter[2] + s[3 * wrap] * filter[3]; sum = sum >> FILTER_BITS; if (sum<0) sum = 0; else if (sum>255) sum=255; dst[0] = sum; dst++; s++; dst_width--; i--; } /* Do our altivec resampling on 16 pixels at once. */ while(dst_width>=16) { /* Read 16 (potentially unaligned) bytes from each of 4 lines into 4 vectors, and split them into shorts. Interleave the multipy/accumulate for the resample filter with the loads to hide the 3 cycle latency the vec_madds have. */ tv = (vector unsigned char *) &s[0 * wrap]; tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[i * wrap])); srchv[0].v = (vector signed short) vec_mergeh(zero, tmp); srclv[0].v = (vector signed short) vec_mergel(zero, tmp); sumhv = vec_madds(srchv[0].v, fv[0].v, zeros); sumlv = vec_madds(srclv[0].v, fv[0].v, zeros); tv = (vector unsigned char *) &s[1 * wrap]; tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[1 * wrap])); srchv[1].v = (vector signed short) vec_mergeh(zero, tmp); srclv[1].v = (vector signed short) vec_mergel(zero, tmp); sumhv = vec_madds(srchv[1].v, fv[1].v, sumhv); sumlv = vec_madds(srclv[1].v, fv[1].v, sumlv); tv = (vector unsigned char *) &s[2 * wrap]; tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[2 * wrap])); srchv[2].v = (vector signed short) vec_mergeh(zero, tmp); srclv[2].v = (vector signed short) vec_mergel(zero, tmp); sumhv = vec_madds(srchv[2].v, fv[2].v, sumhv); sumlv = vec_madds(srclv[2].v, fv[2].v, sumlv); tv = (vector unsigned char *) &s[3 * wrap]; tmp = vec_perm(tv[0], tv[1], vec_lvsl(0, &s[3 * wrap])); srchv[3].v = (vector signed short) vec_mergeh(zero, tmp); srclv[3].v = (vector signed short) vec_mergel(zero, tmp); sumhv = vec_madds(srchv[3].v, fv[3].v, sumhv); sumlv = vec_madds(srclv[3].v, fv[3].v, sumlv); /* Pack the results into our destination vector, and do an aligned write of that back to memory. */ dstv = vec_packsu(sumhv, sumlv) ; vec_st(dstv, 0, (vector unsigned char *) dst); dst+=16; s+=16; dst_width-=16; } /*
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -