📄 backprop.cpp
字号:
#include "backprop.h"
#include <time.h>
#include <stdlib.h>
// initializes and allocates memory on heap
CBackProp::CBackProp(int nl,int *sz,double b,double a):beta(b),alpha(a)
{
// set no of layers and their sizes
numl=nl;
lsize=new int[numl];
for(int i=0;i<numl;i++){
lsize[i]=sz[i];
}
// allocate memory for output of each neuron
out = new double*[numl];
for( i=0;i<numl;i++){
out[i]=new double[lsize[i]];
}
// allocate memory for delta
delta = new double*[numl];
for(i=1;i<numl;i++){
delta[i]=new double[lsize[i]];
}
// allocate memory for weights
weight = new double**[numl];
for(i=1;i<numl;i++){
weight[i]=new double*[lsize[i]];
}
for(i=1;i<numl;i++){
for(int j=0;j<lsize[i];j++){
weight[i][j]=new double[lsize[i-1]+1];
}
}
// allocate memory for previous weights
prevDwt = new double**[numl];
for(i=1;i<numl;i++){
prevDwt[i]=new double*[lsize[i]];
}
for(i=1;i<numl;i++){
for(int j=0;j<lsize[i];j++){
prevDwt[i][j]=new double[lsize[i-1]+1];
}
}
// seed and assign random weights
srand((unsigned)(time(NULL)));
for(i=1;i<numl;i++)
for(int j=0;j<lsize[i];j++)
for(int k=0;k<lsize[i-1]+1;k++)
weight[i][j][k]=(double)(rand())/(RAND_MAX/2) - 1;//32767
// initialize previous weights to 0 for first iteration
for(i=1;i<numl;i++)
for(int j=0;j<lsize[i];j++)
for(int k=0;k<lsize[i-1]+1;k++)
prevDwt[i][j][k]=(double)0.0;
// Note that the following variables are unused,
//
// delta[0]
// weight[0]
// prevDwt[0]
// I did this intentionaly to maintains consistancy in numbering the layers.
// Since for a net having n layers, input layer is refered to as 0th layer,
// first hidden layer as 1st layer and the nth layer as output layer. And
// first (0th) layer just stores the inputs hence there is no delta or weigth
// values corresponding to it.
}
CBackProp::~CBackProp()
{
// free out
for(int i=0;i<numl;i++)
delete[] out[i];
delete[] out;
// free delta
for(i=1;i<numl;i++)
delete[] delta[i];
delete[] delta;
// free weight
for(i=1;i<numl;i++)
for(int j=0;j<lsize[i];j++)
delete[] weight[i][j];
for(i=1;i<numl;i++)
delete[] weight[i];
delete[] weight;
// free prevDwt
for(i=1;i<numl;i++)
for(int j=0;j<lsize[i];j++)
delete[] prevDwt[i][j];
for(i=1;i<numl;i++)
delete[] prevDwt[i];
delete[] prevDwt;
// free layer info
delete[] lsize;
}
// sigmoid function
double CBackProp::sigmoid(double in)
{
return (double)(1/(1+exp(-in)));
}
// mean square error
double CBackProp::mse(double *tgt) const
{
double mse=0;
for(int i=0;i<lsize[numl-1];i++){
mse+=(tgt[i]-out[numl-1][i])*(tgt[i]-out[numl-1][i]);
}
return mse/2;
}
// returns i'th output of the net
double CBackProp::Out(int i) const
{
return out[numl-1][i];
}
// feed forward one set of input
void CBackProp::ffwd(double *in)
{
double sum;
// assign content to input layer
for(int i=0;i<lsize[0];i++)
out[0][i]=in[i]; // output_from_neuron(i,j) Jth neuron in Ith Layer
// assign output(activation) value
// to each neuron usng sigmoid func
for(i=1;i<numl;i++){ // For each layer
for(int j=0;j<lsize[i];j++){ // For each neuron in current layer
sum=0.0;
for(int k=0;k<lsize[i-1];k++){ // For input from each neuron in preceeding layer
sum+= out[i-1][k]*weight[i][j][k]; // Apply weight to inputs and add to sum
}
sum+=weight[i][j][lsize[i-1]]; // Apply bias
out[i][j]=sigmoid(sum); // Apply sigmoid function
}
}
}
// backpropogate errors from output
// layer uptill the first hidden layer
void CBackProp::bpgt(double *in,double *tgt)
{
double sum;
// update output values for each neuron
ffwd(in);
// find delta for output layer
for(int i=0;i<lsize[numl-1];i++){
delta[numl-1][i]=out[numl-1][i]*
(1-out[numl-1][i])*(tgt[i]-out[numl-1][i]);
}
// find delta for hidden layers
for(i=numl-2;i>0;i--){
for(int j=0;j<lsize[i];j++){
sum=0.0;
for(int k=0;k<lsize[i+1];k++){
sum+=delta[i+1][k]*weight[i+1][k][j];
}
delta[i][j]=out[i][j]*(1-out[i][j])*sum;
}
}
// apply momentum ( does nothing if alpha=0 )
for(i=1;i<numl;i++){
for(int j=0;j<lsize[i];j++){
for(int k=0;k<lsize[i-1];k++){
weight[i][j][k]+=alpha*prevDwt[i][j][k];
}
weight[i][j][lsize[i-1]]+=alpha*prevDwt[i][j][lsize[i-1]];
}
}
// adjust weights usng steepest descent
for(i=1;i<numl;i++){
for(int j=0;j<lsize[i];j++){
for(int k=0;k<lsize[i-1];k++){
prevDwt[i][j][k]=beta*delta[i][j]*out[i-1][k];
weight[i][j][k]+=prevDwt[i][j][k];
}
prevDwt[i][j][lsize[i-1]]=beta*delta[i][j];
weight[i][j][lsize[i-1]]+=prevDwt[i][j][lsize[i-1]];
}
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -