⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 page_98.html

📁 怎样挖掘你的网站的内容。本领域内唯一的书
💻 HTML
字号:
<HTML>  <HEAD>    <!--SCRIPT LANGUAGE="JavaScript" SRC="http://a1835.g.akamai.net/f/1835/276/3h/www.netlibrary.com/include/js/dictionary_library.js"></SCRIPT>    <SCRIPT LANGUAGE="JavaScript">      if (!opener){document.onkeyup=parent.turnBookPage;}    </SCRIPT!-->    <META HTTP-EQUIV="Cache-Control" CONTENT="no-cache">    <META HTTP-EQUIV="Pragma" CONTENT="no-cache">    <META HTTP-EQUIV="Expires" CONTENT="-1"><META http-equiv="Content-Type" content="text/html; charset=windows-1252"><SCRIPT>var PrevPage="Page_97";var NextPage="Page_99";var CurPage="Page_98";var PageOrder="109";</SCRIPT>  <TITLE>Document</TITLE>  </HEAD>  <BODY BGCOLOR="#FFFFFF"><CENTER><TABLE BORDER=0 WIDTH=100% CELLPADDING=0><TR><TD ALIGN=CENTER>  <TABLE BORDER=0 CELLPADDING=2 CELLSPACING=0 WIDTH=100%>  <TR>  <TD ALIGN=LEFT><A HREF='Page_97.html'>Previous</A></TD>  <TD ALIGN=RIGHT><A HREF='Page_99.html'>Next</A></TD>  </TR>  </TABLE></TD></TR><TR><TD ALIGN=LEFT><P><A NAME='JUMPDEST_Page_98'/><A NAME='{35B}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=RIGHT><FONT FACE='Times New Roman, Times, Serif' SIZE=2 COLOR=#FF0000>Page 98</FONT></TD></TR></TABLE><A NAME='{35C}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>be taken in their use, since they do require some adjustments, such as the selection of their topography and the setting of learning rates. The next generation of these tools is also beginning to incorporate genetic algorithms to optimize their settings and improve their results. These groups of tools include: 4 Thought, BrainMaker, INSPECT, MATLAB NN Toolbox, ModelQuest, NGO, NeuralWorks Predict, Neural Works Professional II/PLUS, Proforma, PRW, SPSS Neural Connection, and Trajecta.</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{35D}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>A common sense rule for determining when to use a data mining tool based on a neural network involves the following considerations:</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{35E}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Symbol' SIZE=3>&middot;</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3> Are you dealing with a complex problem involving much input and which does not require a true model or a clear-cut solution with absolute accuracy?</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{35F}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Symbol' SIZE=3>&middot;</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3> Will being close be good enough?</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{360}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Symbol' SIZE=3>&middot;</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3> Are you trying to solve nonlinear problems, that is to say, is there a clear-cut relation between your inputs and outputs?</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{361}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Symbol' SIZE=3>&middot;</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3> Are you dealing with very large amounts of historical data?</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{362}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Symbol' SIZE=3>&middot;</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3> Do you need a solution quickly, and does that solution require an explanation (will a &quot;black box&quot; model do)?</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{363}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>If in your opinion your problem meets these requirements, then the use of a neural network tool will work for you. However, a neural network solution should be avoided in situations where a problem requires a robust model. A neural network should also be avoided in situations where a clear understanding or an insight into the pattern you are trying to discover is required. Some neural network tools provide sensitivity reports, which enable you to see some of the relationships between the inputs and your desired output.</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{364}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=17></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3><B>Machine-Learning Algorithms</B></FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{365}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>Machine-learning algorithms are commonly used to segment a database, with their output being either in the form of a decision tree or a series of IF/THEN rules. They commonly work in supervised learning situations where they attempt to find a test for splitting a database among the most desired categories, such as &quot;website visitor will buy vs. will not buy.&quot; In both instances these algorithms seek to duplicate the protocol that a skilled statistician would follow in analyzing a data set: to identify important data clusters of features within a database.</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{366}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>Data mining tools incorporating machine-learning algorithms such as CART (classification and regression trees), CHAID (chi-squared</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3 COLOR=#FFFF00><!-- continue --></FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{367}'/></FORM></P></TD></TR></TABLE><P><FONT SIZE=0 COLOR=WHITE></CENTER><A NAME="bottom">&nbsp;</A><!-- netLibrary.com Copyright Notice -->  </BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -