📄 page_85.html
字号:
<HTML> <HEAD> <!--SCRIPT LANGUAGE="JavaScript" SRC="http://a1835.g.akamai.net/f/1835/276/3h/www.netlibrary.com/include/js/dictionary_library.js"></SCRIPT> <SCRIPT LANGUAGE="JavaScript"> if (!opener){document.onkeyup=parent.turnBookPage;} </SCRIPT!--> <META HTTP-EQUIV="Cache-Control" CONTENT="no-cache"> <META HTTP-EQUIV="Pragma" CONTENT="no-cache"> <META HTTP-EQUIV="Expires" CONTENT="-1"><META http-equiv="Content-Type" content="text/html; charset=windows-1252"><SCRIPT>var PrevPage="Page_84";var NextPage="Page_86";var CurPage="Page_85";var PageOrder="96";</SCRIPT> <TITLE>Document</TITLE> </HEAD> <BODY BGCOLOR="#FFFFFF"><CENTER><TABLE BORDER=0 WIDTH=100% CELLPADDING=0><TR><TD ALIGN=CENTER> <TABLE BORDER=0 CELLPADDING=2 CELLSPACING=0 WIDTH=100%> <TR> <TD ALIGN=LEFT><A HREF='Page_84.html'>Previous</A></TD> <TD ALIGN=RIGHT><A HREF='Page_86.html'>Next</A></TD> </TR> </TABLE></TD></TR><TR><TD ALIGN=LEFT><P><A NAME='JUMPDEST_Page_85'/><A NAME='{2EC}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=RIGHT><FONT FACE='Times New Roman, Times, Serif' SIZE=2 COLOR=#FF0000>Page 85</FONT></TD></TR></TABLE><A NAME='{2ED}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=3><IMG SRC='0085-01.JPG' BORDER=0 ALT='0085-01.jpg' WIDTH=439 HEIGHT=124></FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{2EE}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2>Figure 3-1 <BR>The roots of data mining are based on the inductive approach to knowledge discovery.</FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{2EF}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>majority of support from both the government and venture funding. Expert systems used special languages, such as LISP and Prolog, and in some instances special workstations. For example, at one time American Express used an expert system to assist them in approving credit, while the Internal Revenue Service tried to use an expert system in the selection of tax returns for audits. A soup company attempted to construct an expert system by codifying the processes of its master cook.</FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{2F0}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>The success of these expert systems, however, was short lived, as the programs suffered from significant shortcomings: they were brittle and expensive to maintain. Some expert systems required hundreds of rules that had to be manually maintained and updated to stay in tune to a rapidly changing business environment. Expert systems eventually proved to be too fragile and rigid to keep pace with the rapidly evolving conditions of everyday transactions. However, it was during this period that two researchers from the Massachusetts Institute of Technology, Seymour Papert and Marvin Minsky, vying for funding for expert system technology, wrote about the deficiencies of neural networks and thus stymied the development of the inductive approach to AI for several years.</FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{2F1}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=17></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3><B>The Bottom-Up Approach</B></FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{2F2}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>The alternate approach to AI is inductive data analysis, which extracts patterns from data and learns from examples. The inductive approach to AI involves generating the rules for a system from thousands of cases, in contrast to extracting the rules from experts via interviews. It was an approach to rule generation that did not take off until the 1980s with the work of several researchers from diverse fields of mathematics, statistics, and computational science. John Hopfield advanced the concept of a feedback neural network. J. Ross Quinlan, a mathematician, developed the Interative Dichotomiser ID3 machine-learning algorithm, and John Holland discovered genetic algorithms.</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3 COLOR=#FFFF00><!-- break --></FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{2F3}'/></FORM></P></TD></TR></TABLE><P><FONT SIZE=0 COLOR=WHITE></CENTER><A NAME="bottom"> </A><!-- netLibrary.com Copyright Notice --> </BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -