📄 page_136.html
字号:
<HTML> <HEAD> <!--SCRIPT LANGUAGE="JavaScript" SRC="http://a1835.g.akamai.net/f/1835/276/3h/www.netlibrary.com/include/js/dictionary_library.js"></SCRIPT> <SCRIPT LANGUAGE="JavaScript"> if (!opener){document.onkeyup=parent.turnBookPage;} </SCRIPT!--> <META HTTP-EQUIV="Cache-Control" CONTENT="no-cache"> <META HTTP-EQUIV="Pragma" CONTENT="no-cache"> <META HTTP-EQUIV="Expires" CONTENT="-1"><META http-equiv="Content-Type" content="text/html; charset=windows-1252"><SCRIPT>var PrevPage="Page_135";var NextPage="Page_137";var CurPage="Page_136";var PageOrder="146";</SCRIPT> <TITLE>Document</TITLE> </HEAD> <BODY BGCOLOR="#FFFFFF"><CENTER><TABLE BORDER=0 WIDTH=100% CELLPADDING=0><TR><TD ALIGN=CENTER> <TABLE BORDER=0 CELLPADDING=2 CELLSPACING=0 WIDTH=100%> <TR> <TD ALIGN=LEFT><A HREF='Page_135.html'>Previous</A></TD> <TD ALIGN=RIGHT><A HREF='Page_137.html'>Next</A></TD> </TR> </TABLE></TD></TR><TR><TD ALIGN=LEFT><P><A NAME='JUMPDEST_Page_136'/><A NAME='{496}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=RIGHT><FONT FACE='Times New Roman, Times, Serif' SIZE=2 COLOR=#FF0000>Page 136</FONT></TD></TR></TABLE><A NAME='{497}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>rules from a clustering analysis. To do so you will need to first perform the clustering analysis using a Self-Organization Map or Kohonen Network. Next you will run the identified clusters through a machine-learning algorithm in order to generate the descriptive IF/THEN rules that ''profile" the extracted clusters. Conversely, you may have to first do an analysis using a machine-learning algorithm on a data set with a large number of attributes in order to compress it and/or to identify a few significant attributes, and then run those significant attributes through a neural network for the final classification model.</FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{498}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>Tradeoffs may be in order, but you must weigh your options with respect to what your business and website needs are and what tools you will need in your analysis. What are you after, insight or results? Often the format of your data mining solution will determine what data mining tool you will use. If you need to explain how and why you uncovered a pattern in your web data, you may need to use a machine-learning algorithm such as a decision tree or rule generator data mining tool. If all that matters is accuracy and efficiency, a neural network tool will do. For an e-commerce site, most likely both paradigms will be advantageous, since knowing the demographics of customers and increased sales are both desired goals.</FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{499}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=17></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3><B>Select the Tools</B></FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{49A}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>The selection of the right tool is clearly dependent on the task you are trying to accomplish. For example, the following matrix describes what each data mining technology is best suited for:</FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{49B}'/><TABLE CELLPADDING=0 CELLSPACING=0 BORDER=0 WIDTH='100%'><TR><TD HEIGHT=12></TD></TR><TR><TD><TABLE CELLSPACING=0 BORDER=1 BORDERCOLOR=#000000 RULES=ALL WIDTH=583 CELLPADDING=5><TR><TD WIDTH=165 VALIGN=TOP><FONT FACE='Times New Roman, Times, Serif' SIZE=2><B>Tool Type</B></FONT></TD><TD WIDTH=130 VALIGN=TOP><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2><B>Classification</B></FONT></TD></TR></TABLE></TD><TD WIDTH=138 VALIGN=TOP><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2><B>Clustering</B></FONT></TD></TR></TABLE></TD><TD WIDTH=150 VALIGN=TOP><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2><B>Description</B></FONT></TD></TR></TABLE></TD></TR><TR><TD WIDTH=165 VALIGN=TOP><FONT FACE='Times New Roman, Times, Serif' SIZE=2>Genetic Algorithms</FONT></TD><TD WIDTH=130 VALIGN=TOP><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2>Yes</FONT></TD></TR></TABLE></TD><TD WIDTH=138 VALIGN=TOP><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2>No</FONT></TD></TR></TABLE></TD><TD WIDTH=150 VALIGN=TOP><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2>No</FONT></TD></TR></TABLE></TD></TR><TR><TD WIDTH=165 VALIGN=TOP><FONT FACE='Times New Roman, Times, Serif' SIZE=2>Machine Learning</FONT></TD><TD WIDTH=130 VALIGN=TOP><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2>Yes</FONT></TD></TR></TABLE></TD><TD WIDTH=138 VALIGN=TOP><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2>Yes</FONT></TD></TR></TABLE></TD><TD WIDTH=150 VALIGN=TOP><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2>Yes</FONT></TD></TR></TABLE></TD></TR><TR><TD WIDTH=165 VALIGN=TOP><FONT FACE='Times New Roman, Times, Serif' SIZE=2>Neural Networks</FONT></TD><TD WIDTH=130 VALIGN=TOP><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2>Yes</FONT></TD></TR></TABLE></TD><TD WIDTH=138 VALIGN=TOP><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2>Yes</FONT></TD></TR></TABLE></TD><TD WIDTH=150 VALIGN=TOP><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2>No</FONT></TD></TR></TABLE></TD></TR><TR><TD WIDTH=165 VALIGN=TOP><FONT FACE='Times New Roman, Times, Serif' SIZE=2>Self-Organizing Maps</FONT></TD><TD WIDTH=130 VALIGN=TOP><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2>No</FONT></TD></TR></TABLE></TD><TD WIDTH=138 VALIGN=TOP><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2>Yes</FONT></TD></TR></TABLE></TD><TD WIDTH=150 VALIGN=TOP><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2>No</FONT></TD></TR></TABLE></TD></TR></TABLE></TD></TR></TABLE><BR><A NAME='{49C}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>Along with selecting the right technology, the characteristics and structure of your data must also be considered when selecting the right tool for the job. Here is a checklist of data-related issues you need to consider when selecting a data mining tool:</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3 COLOR=#FFFF00><!-- break --></FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{49D}'/></FORM></P></TD></TR></TABLE><P><FONT SIZE=0 COLOR=WHITE></CENTER><A NAME="bottom"> </A><!-- netLibrary.com Copyright Notice --> </BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -