📄 page_315.html
字号:
<HTML> <HEAD> <!--SCRIPT LANGUAGE="JavaScript" SRC="http://a1835.g.akamai.net/f/1835/276/3h/www.netlibrary.com/include/js/dictionary_library.js"></SCRIPT> <SCRIPT LANGUAGE="JavaScript"> if (!opener){document.onkeyup=parent.turnBookPage;} </SCRIPT!--> <META HTTP-EQUIV="Cache-Control" CONTENT="no-cache"> <META HTTP-EQUIV="Pragma" CONTENT="no-cache"> <META HTTP-EQUIV="Expires" CONTENT="-1"><META http-equiv="Content-Type" content="text/html; charset=windows-1252"><SCRIPT>var PrevPage="Page_314";var NextPage="Page_316";var CurPage="Page_315";var PageOrder="322";</SCRIPT> <TITLE>Document</TITLE> </HEAD> <BODY BGCOLOR="#FFFFFF"><CENTER><TABLE BORDER=0 WIDTH=100% CELLPADDING=0><TR><TD ALIGN=CENTER> <TABLE BORDER=0 CELLPADDING=2 CELLSPACING=0 WIDTH=100%> <TR> <TD ALIGN=LEFT><A HREF='Page_314.html'>Previous</A></TD> <TD ALIGN=RIGHT><A HREF='Page_316.html'>Next</A></TD> </TR> </TABLE></TD></TR><TR><TD ALIGN=LEFT><P><A NAME='JUMPDEST_Page_315'/><A NAME='{A66}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=RIGHT><FONT FACE='Times New Roman, Times, Serif' SIZE=2 COLOR=#FF0000>Page 315</FONT></TD></TR></TABLE><A NAME='{A67}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=3><IMG SRC='0315-01.JPG' BORDER=0 ALT='0315-01.jpg' WIDTH=319 HEIGHT=249></FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{A68}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2>Figure 9-9 <BR>The clustering of website visitors<BR>based on the search engine they used.</FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{A69}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>ters uncovered in your data mining analysis. The fields to be plotted can be selected on the fly, as shown in Figures 9-8 and 9-9.</FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{A6A}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>Note in Figures 9-8 and 9-9 that the predominant search engines for this website seem to be Excite and Infoseek. This clustering analysis concentrated on identifying the features of those visitors to this website who made two purchases and what search engine they used. However, similar analyses can be performed to identify other types of associations, such as those customers who have spent more than $50 or $100 in purchases.</FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{A6B}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>Another clustering analysis was performed, this time with the intent of identifying associations between various product lines being sold at this website. For this example, there are five distinct categories of product types: Item_00, Item_01, Item_02, Item_03, Item_04, and Item_05. The graph in Figure 9-10 shows a high concentration on the right, which can be marked again, in order to create a derived data subset, which will be generated as product_region1.</FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{A6C}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>As in the prior analysis, we next derive a subset of the data directly from the clustering graph by simply marking the area we are interested in exploring further, in this case, the clusters on the right. We next connect the derived data set to the rule-generating C5.0 algorithm, which will extract the following rules describing this particular grouping:</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3 COLOR=#FFFF00><!-- break --></FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{A6D}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Courier New, Courier, Mono New, Courier, Mono' SIZE=2>Domain com <BR>Vehicle Value Luxury <BR> Product Item_00 (248.0, 1.0) -> product_region1 <BR> Product Item_02 <BR></FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -