⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 page_137.html

📁 怎样挖掘你的网站的内容。本领域内唯一的书
💻 HTML
字号:
<HTML>  <HEAD>    <!--SCRIPT LANGUAGE="JavaScript" SRC="http://a1835.g.akamai.net/f/1835/276/3h/www.netlibrary.com/include/js/dictionary_library.js"></SCRIPT>    <SCRIPT LANGUAGE="JavaScript">      if (!opener){document.onkeyup=parent.turnBookPage;}    </SCRIPT!-->    <META HTTP-EQUIV="Cache-Control" CONTENT="no-cache">    <META HTTP-EQUIV="Pragma" CONTENT="no-cache">    <META HTTP-EQUIV="Expires" CONTENT="-1"><META http-equiv="Content-Type" content="text/html; charset=windows-1252"><SCRIPT>var PrevPage="Page_136";var NextPage="Page_138";var CurPage="Page_137";var PageOrder="147";</SCRIPT>  <TITLE>Document</TITLE>  </HEAD>  <BODY BGCOLOR="#FFFFFF"><CENTER><TABLE BORDER=0 WIDTH=100% CELLPADDING=0><TR><TD ALIGN=CENTER>  <TABLE BORDER=0 CELLPADDING=2 CELLSPACING=0 WIDTH=100%>  <TR>  <TD ALIGN=LEFT><A HREF='Page_136.html'>Previous</A></TD>  <TD ALIGN=RIGHT><A HREF='Page_138.html'>Next</A></TD>  </TR>  </TABLE></TD></TR><TR><TD ALIGN=LEFT><P><A NAME='JUMPDEST_Page_137'/><A NAME='{49E}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=RIGHT><FONT FACE='Times New Roman, Times, Serif' SIZE=2 COLOR=#FF0000>Page 137</FONT></TD></TR></TABLE><A NAME='{49F}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Symbol' SIZE=3>&middot;</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3> number of continuous value fields</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{4A0}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Symbol' SIZE=3>&middot;</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3> number of dependent variables</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{4A1}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Symbol' SIZE=3>&middot;</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3> number of categorical fields</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{4A2}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Symbol' SIZE=3>&middot;</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3> length and type of records</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{4A3}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Symbol' SIZE=3>&middot;</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3> skewness of the data set</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{4A4}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>As a rule, machine-learning algorithms perform better on skewed data sets with a high number of categorical attributes and with a high number of fields per records. Neural networks, on the other hand, do better with numeric data. The following are a dozen criteria you need to consider in the selection of the right data mining tool. They involve software issues and hardware requirements:</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{4A5}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3><B><I>Scalability</I></B></FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{4A6}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>As a website and its log files and forms database get larger, a tool's performance should improve accordingly. Scalability means that by taking advantage of parallel database management systems and additional CPUs, the user is able to work with more data, build more models, and improve overall accuracy by adding additional processors. As the data increases so does the complexity, not only in the number of records but also in the number of attributes, variables, and possible website patterns. If a platform lacks the ability to scale, the computationally intensive nature of data mining will slow and eventually kill the decision support system.</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{4A7}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>The number of interactions among variables and amount of nonlinearity of parameters also contribute to the scalability of complexity. As the patterns become more subtle among the noise, the need for accuracy rises. At this juncture it is important to evaluate what kind of parallelism the tool supports. Find out if the tool supports a symmetric multiprocessing system (SMP) or massively parallel processing system (MPP). Technical factors affecting scalability include database size, model complexity, performance monitoring and tuning, as well as effective model validation. The issue of scalability in a data mining tool is how well it takes advantage of hardware design, including parallel algorithms and their direct access to parallel DBMSs. A high-end data mining tool needs to be able to run on a scalable hardware platform.</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{4A8}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3><B><I>Accuracy</I></B></FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{4A9}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>Accuracy is measured in the error rate of the algorithm or network for predictive modeling. There are several ways to evaluation accu-</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3 COLOR=#FFFF00><!-- soft --></FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{4AA}'/></FORM></P></TD></TR></TABLE><P><FONT SIZE=0 COLOR=WHITE></CENTER><A NAME="bottom">&nbsp;</A><!-- netLibrary.com Copyright Notice -->  </BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -