📄 page_11.html
字号:
<HTML> <HEAD> <!--SCRIPT LANGUAGE="JavaScript" SRC="http://a1835.g.akamai.net/f/1835/276/3h/www.netlibrary.com/include/js/dictionary_library.js"></SCRIPT> <SCRIPT LANGUAGE="JavaScript"> if (!opener){document.onkeyup=parent.turnBookPage;} </SCRIPT!--> <META HTTP-EQUIV="Cache-Control" CONTENT="no-cache"> <META HTTP-EQUIV="Pragma" CONTENT="no-cache"> <META HTTP-EQUIV="Expires" CONTENT="-1"><META http-equiv="Content-Type" content="text/html; charset=windows-1252"><SCRIPT>var PrevPage="Page_10";var NextPage="Page_12";var CurPage="Page_11";var PageOrder="23";</SCRIPT> <TITLE>Document</TITLE> </HEAD> <BODY BGCOLOR="#FFFFFF"><CENTER><TABLE BORDER=0 WIDTH=100% CELLPADDING=0><TR><TD ALIGN=CENTER> <TABLE BORDER=0 CELLPADDING=2 CELLSPACING=0 WIDTH=100%> <TR> <TD ALIGN=LEFT><A HREF='Page_10.html'>Previous</A></TD> <TD ALIGN=RIGHT><A HREF='Page_12.html'>Next</A></TD> </TR> </TABLE></TD></TR><TR><TD ALIGN=LEFT><P><A NAME='JUMPDEST_Page_11'/><A NAME='{7F}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=RIGHT><FONT FACE='Times New Roman, Times, Serif' SIZE=2 COLOR=#FF0000>Page 11</FONT></TD></TR></TABLE><A NAME='{80}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=3><IMG SRC='0011-01.JPG' BORDER=0 ALT='0011-01.jpg' WIDTH=445 HEIGHT=147></FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{81}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2>Figure 1-3 <BR>Data mining instrument monitoring the accuracy to a model.</FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{82}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>site who made purchases or clicked through certain ads or banners. (See Figure 1-3.)</FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{83}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>The end product of neural network analyses is usually C code, which can be used to target future visitors to your site via e-mail with product-specific offers. The C code itself is a set of weights, or a formula, that uses the inputs of the model to compute a projected output or score. This score is usually in the form of a binary output such as "0 = will not buy, or 1 = will buy." The output can also be a continuous value, such as the projected amount of purchases a visitor is likely to make. Here is an example of C code that can be extracted and used to predict propensity to purchase models:</FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{84}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Courier New, Courier, Mono New, Courier, Mono' SIZE=2>double *purchase(double inarr[]) <BR>{<BR> /* visitor_age-Triplet */ <BR> visitor_age = 0 - 22.0566 - 40.4871*node5 - 18.3542*pow2(node5) <BR> + 0.174813*pow3(node5) - 68.848*node31 <BR> - 156.303*node5*node31 - 83.2704*pow2(node5)*node31 <BR> - 44.5781*pow2(node31) - 37.7005*node5*pow2(node31) <BR> - 0.0442751*pow3(node31) - 64.3699*node32 <BR> - 54.3879*node5*node32 - 185.61*node31*node32 <BR> - 156.467*node5*node31*node32 - <BR> - 0.109251*pow2(node32) - 0.272628*node31*pow2(node32) <BR> - 0.00897233*pow3(node32) ;</FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{85}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3><B><I>Segmentation</I></B></FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{86}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3><I>What are the different types of visitors to your website?</I> Segmentation analysis using machine-learning algorithms can break down visitors to a website into unique groups with individual behavior. (See Figure 1-4.) These stratified groupings can then be used to make statistical projections, such as the potential amount of purchases they are likely to make.</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3 COLOR=#FFFF00><!-- break --></FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{87}'/></FORM></P></TD></TR></TABLE><P><FONT SIZE=0 COLOR=WHITE></CENTER><A NAME="bottom"> </A><!-- netLibrary.com Copyright Notice --> </BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -