⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 page_94.html

📁 怎样挖掘你的网站的内容。本领域内唯一的书
💻 HTML
字号:
<HTML>  <HEAD>    <!--SCRIPT LANGUAGE="JavaScript" SRC="http://a1835.g.akamai.net/f/1835/276/3h/www.netlibrary.com/include/js/dictionary_library.js"></SCRIPT>    <SCRIPT LANGUAGE="JavaScript">      if (!opener){document.onkeyup=parent.turnBookPage;}    </SCRIPT!-->    <META HTTP-EQUIV="Cache-Control" CONTENT="no-cache">    <META HTTP-EQUIV="Pragma" CONTENT="no-cache">    <META HTTP-EQUIV="Expires" CONTENT="-1"><META http-equiv="Content-Type" content="text/html; charset=windows-1252"><SCRIPT>var PrevPage="Page_93";var NextPage="Page_95";var CurPage="Page_94";var PageOrder="105";</SCRIPT>  <TITLE>Document</TITLE>  </HEAD>  <BODY BGCOLOR="#FFFFFF"><CENTER><TABLE BORDER=0 WIDTH=100% CELLPADDING=0><TR><TD ALIGN=CENTER>  <TABLE BORDER=0 CELLPADDING=2 CELLSPACING=0 WIDTH=100%>  <TR>  <TD ALIGN=LEFT><A HREF='Page_93.html'>Previous</A></TD>  <TD ALIGN=RIGHT><A HREF='Page_95.html'>Next</A></TD>  </TR>  </TABLE></TD></TR><TR><TD ALIGN=LEFT><P><A NAME='JUMPDEST_Page_94'/><A NAME='{338}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=RIGHT><FONT FACE='Times New Roman, Times, Serif' SIZE=2 COLOR=#FF0000>Page 94</FONT></TD></TR></TABLE><A NAME='{339}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>Address fields on the Web present another problem. For example, the ZIP code 94502 is not greater than 94501 by one, or larger by 93269 than the ZIP 01233. It is instead another <I>class.</I> A ZIP code is a category, not a continuous value number. One of the best ways of dealing with this type of categorical variable is to use another tool or network for clustering. The time needed to train a neural network is directly related to the number of input features used by the network, which means the more features you input, the longer it takes for a net to converge.</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{33A}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>A good way of dealing with these types of inputs is to use a machine-learning algorithm tool to create clusters of similar ZIP codes, which can then be transformed into 1-of-N values for inputting into your neural network. Using another data mining tool to prioritize the inputs into a neural network is a good way of determining which features are the most important for training and constructing your model. Another technique for ''data compression&quot; is to do statistical correlation, such as Pearson's. Some of the more advanced neural network tools include features for pruning variables, prior to training on data sets.</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{33B}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=17></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3><B>Purchasing Propensity</B></FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{33C}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>The output of a neural network is in the format of a continuous value. As such it can be difficult to interpret for categorical results, such as &quot;will buy vs. will not buy.&quot; However, there is a method by which you can take a normal neural network output and create categorical results, which involves creating multiple outputs, as Figure 3-8 shows.</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{33D}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>In these situations, you may want to have multiple outputs with each category being a propensity to purchase unique products or services. You may opt to position certain ads or offers on the basis of how a neural network score corresponds with the maximum possible value, or the top three values, or if it exceeds a certain threshold value.</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3 COLOR=#FFFF00><!-- break --></FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{33E}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=3><IMG SRC='0094-01.JPG' BORDER=0 ALT='0094-01.jpg' WIDTH=434 HEIGHT=92></FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{33F}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2>Figure&nbsp;3-8&nbsp;<BR>A&nbsp;multiple&nbsp;output&nbsp;network&nbsp;for&nbsp;predicting&nbsp;propensity&nbsp;&nbsp;to&nbsp;purchase&nbsp;different&nbsp;products.&nbsp;</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{340}'/></FORM></P></TD></TR></TABLE><P><FONT SIZE=0 COLOR=WHITE></CENTER><A NAME="bottom">&nbsp;</A><!-- netLibrary.com Copyright Notice -->  </BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -