📄 page_87.html
字号:
<HTML> <HEAD> <!--SCRIPT LANGUAGE="JavaScript" SRC="http://a1835.g.akamai.net/f/1835/276/3h/www.netlibrary.com/include/js/dictionary_library.js"></SCRIPT> <SCRIPT LANGUAGE="JavaScript"> if (!opener){document.onkeyup=parent.turnBookPage;} </SCRIPT!--> <META HTTP-EQUIV="Cache-Control" CONTENT="no-cache"> <META HTTP-EQUIV="Pragma" CONTENT="no-cache"> <META HTTP-EQUIV="Expires" CONTENT="-1"><META http-equiv="Content-Type" content="text/html; charset=windows-1252"><SCRIPT>var PrevPage="Page_86";var NextPage="Page_88";var CurPage="Page_87";var PageOrder="98";</SCRIPT> <TITLE>Document</TITLE> </HEAD> <BODY BGCOLOR="#FFFFFF"><CENTER><TABLE BORDER=0 WIDTH=100% CELLPADDING=0><TR><TD ALIGN=CENTER> <TABLE BORDER=0 CELLPADDING=2 CELLSPACING=0 WIDTH=100%> <TR> <TD ALIGN=LEFT><A HREF='Page_86.html'>Previous</A></TD> <TD ALIGN=RIGHT><A HREF='Page_88.html'>Next</A></TD> </TR> </TABLE></TD></TR><TR><TD ALIGN=LEFT><P><A NAME='JUMPDEST_Page_87'/><A NAME='{2FB}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=RIGHT><FONT FACE='Times New Roman, Times, Serif' SIZE=2 COLOR=#FF0000>Page 87</FONT></TD></TR></TABLE><A NAME='{2FC}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=3><IMG SRC='0087-01.GIF' BORDER=0 ALT='0087-01.gif' WIDTH=316 HEIGHT=92></FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{2FD}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD ALIGN=CENTER><FONT FACE='Times New Roman, Times, Serif' SIZE=2>Figure 3-2<BR> This one output network is the equivalent of logistic regression.</FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{2FE}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>works are basically computing memories where the operations are association and similarity. They can learn when sets of events go together, such as when one product is sold, another is likely to sell as well, based on patterns they have observed over time.</FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{2FF}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>In a neural network, after a pattern is learned, such as when a website visitor selects a series of pages, the network examines the possibilities and makes an immediate match, such as a specific ad, offer, price, or link. This is the type of problem for which a web marketer may make a decision based on personal observations. However, what if the problem is not for just one page, but hundreds, and what if the options are not just two or three but 20 or 30? This is where a neural network can be trained to recognize subtle and small differences. It can learn a pattern of interaction and activity over that website and split the information up across its many neurons. It is trained using hundreds or thousands of sessions so that very quickly it learns what path which type of visitors should be offered.</FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{300}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=17></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3><B>From Slugs to VISA</B></FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{301}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>In 1982, John Hopfield, of Caltech, presented to the National Academy of Sciences the first paper on neural computing presented to any distinguished body since the 1960s. The paper described Hopfield's neural computing system, called the "Hopfield Model" or "cross-bar associative network." Using research based on the olfactory system of a garden slug, Hopfield presented a neural computing system consisting of interconnected processing elements that seek an energy minimum. Hopfield's model represented neuron operation as a thresholding operation and illustrated memory as information stored in the interconnections between neuron units. He also illustrated and modeled the brain's ability to call up responses from many locations in response to a stimulus; he thus modeled how a neural system "associates" information from multiple storage sites for a given input.</FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{302}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR> <TD ROWSPAN=5></TD> <TD COLSPAN=3 HEIGHT=12></TD> <TD ROWSPAN=5></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR><TD></TD> <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>Hopfield's enthusiasm, reputation, and clarity of presentation was well received and prompted researchers to become interested again in the fascinating field of neural computing. The increasing attention in the field</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3 COLOR=#FFFF00><!-- continue --></FONT></TD><TD></TD></TR><TR> <TD COLSPAN=3></TD></TR><TR> <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{303}'/></FORM></P></TD></TR></TABLE><P><FONT SIZE=0 COLOR=WHITE></CENTER><A NAME="bottom"> </A><!-- netLibrary.com Copyright Notice --> </BODY></HTML>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -