⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 page_7.html

📁 怎样挖掘你的网站的内容。本领域内唯一的书
💻 HTML
字号:
<HTML>  <HEAD>    <!--SCRIPT LANGUAGE="JavaScript" SRC="http://a1835.g.akamai.net/f/1835/276/3h/www.netlibrary.com/include/js/dictionary_library.js"></SCRIPT>    <SCRIPT LANGUAGE="JavaScript">      if (!opener){document.onkeyup=parent.turnBookPage;}    </SCRIPT!-->    <META HTTP-EQUIV="Cache-Control" CONTENT="no-cache">    <META HTTP-EQUIV="Pragma" CONTENT="no-cache">    <META HTTP-EQUIV="Expires" CONTENT="-1"><META http-equiv="Content-Type" content="text/html; charset=windows-1252"><SCRIPT>var PrevPage="Page_6";var NextPage="Page_8";var CurPage="Page_7";var PageOrder="19";</SCRIPT>  <TITLE>Document</TITLE>  </HEAD>  <BODY BGCOLOR="#FFFFFF"><CENTER><TABLE BORDER=0 WIDTH=100% CELLPADDING=0><TR><TD ALIGN=CENTER>  <TABLE BORDER=0 CELLPADDING=2 CELLSPACING=0 WIDTH=100%>  <TR>  <TD ALIGN=LEFT><A HREF='Page_6.html'>Previous</A></TD>  <TD ALIGN=RIGHT><A HREF='Page_8.html'>Next</A></TD>  </TR>  </TABLE></TD></TR><TR><TD ALIGN=LEFT><P><A NAME='JUMPDEST_Page_7'/><A NAME='{5D}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0 WIDTH='100%'><TR><TD ALIGN=RIGHT><FONT FACE='Times New Roman, Times, Serif' SIZE=2 COLOR=#FF0000>Page 7</FONT></TD></TR></TABLE><A NAME='{5E}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>forms. You will most likely be working with either relational tables or flat text files, not with unstructured data like sound, video, paper, and digital feeds&#151;the type of data with which the analysts in Langley, Virginia, must wrestle.</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{5F}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=17></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3><B>Nothing New</B></FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{60}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>Today the goal for marketers is to know and serve every customer, one at a time, and to build long-term, mutually beneficial relationships. Data mining is the key to this customer knowledge and intimacy. For years marketers have been using databases to get a picture of their customers. Using data mining tools they can also compile a composite profile to predict which of their customers are most likely to buy a given product and service or respond to certain communication. Artificial intelligence (AI) technology in the form of data mining has been in use by:</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{61}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Symbol' SIZE=3>&middot;</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3> Cellular phone companies, to stop &quot;churn&quot; (customer attrition)</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{62}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Symbol' SIZE=3>&middot;</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3> Financial services firms, for portfolio and risk management</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{63}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Symbol' SIZE=3>&middot;</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3> Credit card companies, to detect fraud and set pricing</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{64}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Symbol' SIZE=3>&middot;</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3> Mail catalogers, to lift their response rates</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{65}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Symbol' SIZE=3>&middot;</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3> Retailers, for market basket analyses</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{66}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>These companies typically store their customer information in massive data warehouses where it is used for business intelligence, decision support, and relational marketing. To improve on the quality of their internal database, these firms have been merging their internal customer and transactional data with demographic and household information purchased from data resellers like Acxiom, Equifax, Metromail, Polk, and others. They do this in order to enhance their knowledge about their customers' lifestyles and to find out what kind of products and services they consume. Through the use of powerful pattern-recognition technologies incorporated in today's data mining suites, these firms have been attempting to anticipate their customers' behavior&#151;will they respond, will they flee, will they pay, and (most often), will they <I>buy,</I> and if so, what, when, and where.</FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{67}'/><TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0><TR>  <TD ROWSPAN=5></TD>  <TD COLSPAN=3 HEIGHT=12></TD>  <TD ROWSPAN=5></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR><TD></TD>  <TD><FONT FACE='Times New Roman, Times, Serif' SIZE=3>One of the world's largest data mining applications is that of Wal-Mart, which individually profiles every one of their 2,900 stores 52 weeks a year for product demands on over 700 million unique store/item combinations. Through data mining Wal-Mart is able to anticipate demand and thus reduce overhead, inventory costs, and stock. It is able to position the preferred type of mouthwash and dog</FONT><FONT FACE='Times New Roman, Times, Serif' SIZE=3 COLOR=#FFFF00><!-- continue --></FONT></TD><TD></TD></TR><TR>  <TD COLSPAN=3></TD></TR><TR>  <TD COLSPAN=3 HEIGHT=1></TD></TR></TABLE><A NAME='{68}'/></FORM></P></TD></TR></TABLE><P><FONT SIZE=0 COLOR=WHITE></CENTER><A NAME="bottom">&nbsp;</A><!-- netLibrary.com Copyright Notice -->  </BODY></HTML>

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -