📄 core.h
字号:
/* Core.h - Basic core logic functions and definitions *//* Copyright Galileo Technology. *//*DESCRIPTIONThis header file contains simple read/write macros for addressingthe SDRAM, devices, GT`s internal registers and PCI (using the PCI`s addressspace). The macros take care of Big/Little endian conversions.*/#ifndef __INCcoreh#define __INCcoreh#include "mv_gen_reg.h"extern unsigned int INTERNAL_REG_BASE_ADDR;/****************************************//* GENERAL Definitions *//****************************************/#define NO_BIT 0x00000000#define BIT0 0x00000001#define BIT1 0x00000002#define BIT2 0x00000004#define BIT3 0x00000008#define BIT4 0x00000010#define BIT5 0x00000020#define BIT6 0x00000040#define BIT7 0x00000080#define BIT8 0x00000100#define BIT9 0x00000200#define BIT10 0x00000400#define BIT11 0x00000800#define BIT12 0x00001000#define BIT13 0x00002000#define BIT14 0x00004000#define BIT15 0x00008000#define BIT16 0x00010000#define BIT17 0x00020000#define BIT18 0x00040000#define BIT19 0x00080000#define BIT20 0x00100000#define BIT21 0x00200000#define BIT22 0x00400000#define BIT23 0x00800000#define BIT24 0x01000000#define BIT25 0x02000000#define BIT26 0x04000000#define BIT27 0x08000000#define BIT28 0x10000000#define BIT29 0x20000000#define BIT30 0x40000000#define BIT31 0x80000000#define _1K 0x00000400#define _2K 0x00000800#define _4K 0x00001000#define _8K 0x00002000#define _16K 0x00004000#define _32K 0x00008000#define _64K 0x00010000#define _128K 0x00020000#define _256K 0x00040000#define _512K 0x00080000#define _1M 0x00100000#define _2M 0x00200000#define _3M 0x00300000#define _4M 0x00400000#define _5M 0x00500000#define _6M 0x00600000#define _7M 0x00700000#define _8M 0x00800000#define _9M 0x00900000#define _10M 0x00a00000#define _11M 0x00b00000#define _12M 0x00c00000#define _13M 0x00d00000#define _14M 0x00e00000#define _15M 0x00f00000#define _16M 0x01000000#define _32M 0x02000000#define _64M 0x04000000#define _128M 0x08000000#define _256M 0x10000000#define _512M 0x20000000#define _1G 0x40000000#define _2G 0x80000000typedef enum _bool{false,true} bool;/* Little to Big endian conversion macros */#ifdef LE /* Little Endian */#define SHORT_SWAP(X) (X)#define WORD_SWAP(X) (X)#define LONG_SWAP(X) ((l64)(X))#else /* Big Endian */#define SHORT_SWAP(X) ((X <<8 ) | (X >> 8))#define WORD_SWAP(X) (((X)&0xff)<<24)+ \ (((X)&0xff00)<<8)+ \ (((X)&0xff0000)>>8)+ \ (((X)&0xff000000)>>24)#define LONG_SWAP(X) ( (l64) (((X)&0xffULL)<<56)+ \ (((X)&0xff00ULL)<<40)+ \ (((X)&0xff0000ULL)<<24)+ \ (((X)&0xff000000ULL)<<8)+ \ (((X)&0xff00000000ULL)>>8)+ \ (((X)&0xff0000000000ULL)>>24)+ \ (((X)&0xff000000000000ULL)>>40)+ \ (((X)&0xff00000000000000ULL)>>56))#endif#ifndef NULL#define NULL 0#endif/* Those two definitions were defined to be compatible with MIPS */#define NONE_CACHEABLE 0x00000000#define CACHEABLE 0x00000000/* 750 cache line */#define CACHE_LINE_SIZE 32#define CACHELINE_MASK_BITS (CACHE_LINE_SIZE - 1)#define CACHELINE_ROUNDUP(A) (((A)+CACHELINE_MASK_BITS) & ~CACHELINE_MASK_BITS)/* Read/Write to/from GT`s internal registers */#define GT_REG_READ(offset, pData) \*pData = ( *((volatile unsigned int *)(NONE_CACHEABLE | \ INTERNAL_REG_BASE_ADDR | (offset))) ) ; \*pData = WORD_SWAP(*pData)#define GTREGREAD(offset) \ (WORD_SWAP( *((volatile unsigned int *)(NONE_CACHEABLE | \ INTERNAL_REG_BASE_ADDR | (offset))) ))#define GT_REG_WRITE(offset, data) \*((unsigned int *)( INTERNAL_REG_BASE_ADDR | (offset))) = \ WORD_SWAP(data)/* Write 32/16/8 bit */#define WRITE_CHAR(address, data) \ *((unsigned char *)(address)) = data#define WRITE_SHORT(address, data) \ *((unsigned short *)(address)) = data#define WRITE_WORD(address, data) \ *((unsigned int *)(address)) = data#define GT_WRITE_CHAR(address, data) WRITE_CHAR(address, data)/* Write 32/16/8 bit NonCacheable *//*#define GT_WRITE_CHAR(address, data) \ (*((unsigned char *)NONE_CACHEABLE(address))) = data#define GT_WRITE_SHORT(address, data) \ (*((unsigned short *)NONE_CACHEABLE(address))) = data#define GT_WRITE_WORD(address, data) \ (*((unsigned int *)NONE_CACHEABLE(address))) = data*/ /*#define GT_WRITE_CHAR(address, data) ((*((volatile unsigned char *)NONE_CACHEABLE((address)))) = ((unsigned char)(data)))1 */ /*#define GT_WRITE_SHORT(address, data) ((*((volatile unsigned short *)NONE_CACHEABLE((address)))) = ((unsigned short)(data)))1 */ /*#define GT_WRITE_WORD(address, data) ((*((volatile unsigned int *)NONE_CACHEABLE((address)))) = ((unsigned int)(data)))1 *//* Read 32/16/8 bits - returns data in variable. */#define READ_CHAR(address, pData) \ *pData = *((volatile unsigned char *)(address))#define READ_SHORT(address, pData) \ *pData = *((volatile unsigned short *)(address))#define READ_WORD(address, pData) \ *pData = *((volatile unsigned int *)(address))/* Read 32/16/8 bit - returns data direct. */#define READCHAR(address) \ *((volatile unsigned char *)((address) | NONE_CACHEABLE))#define READSHORT(address) \ *((volatile unsigned short *)((address) | NONE_CACHEABLE))#define READWORD(address) \ *((volatile unsigned int *)((address) | NONE_CACHEABLE))/* Those two Macros were defined to be compatible with MIPS */#define VIRTUAL_TO_PHY(x) (((unsigned int)x) & 0xffffffff)#define PHY_TO_VIRTUAL(x) (((unsigned int)x) | NONE_CACHEABLE)/* SET_REG_BITS(regOffset,bits) - gets register offset and bits: a 32bit value. It set to logic '1' in the internal register the bits which given as an input example: SET_REG_BITS(0x840,BIT3 | BIT24 | BIT30) - set bits: 3,24 and 30 to logic '1' in register 0x840 while the other bits stays as is. */#define SET_REG_BITS(regOffset,bits) \ *(unsigned int*)(NONE_CACHEABLE | INTERNAL_REG_BASE_ADDR | \ regOffset) |= (unsigned int)WORD_SWAP(bits)/* RESET_REG_BITS(regOffset,bits) - gets register offset and bits: a 32bit value. It set to logic '0' in the internal register the bits which given as an input example: RESET_REG_BITS(0x840,BIT3 | BIT24 | BIT30) - set bits: 3,24 and 30 to logic '0' in register 0x840 while the other bits stays as is. */#define RESET_REG_BITS(regOffset,bits) \ *(unsigned int*)(NONE_CACHEABLE | INTERNAL_REG_BASE_ADDR \ | regOffset) &= ~( (unsigned int)WORD_SWAP(bits) )/* gets register offset and bits: a 32bit value. It set to logic '1' in the internal register the bits which given as an input example: GT_SET_REG_BITS(0x840,BIT3 | BIT24 | BIT30) - set bits: 3,24 and 30 to logic '1' in register 0x840 while the other bits stays as is. */ /*#define GT_SET_REG_BITS(regOffset,bits) ((*((volatile unsigned int*)(NONE_CACHEABLE(INTERNAL_REG_BASE_ADDR) | (regOffset)))) |= ((unsigned int)WORD_SWAP(bits)))1 */ /*#define GT_SET_REG_BITS(regOffset,bits) RESET_REG_BITS(regOffset,bits)1 */#define GT_SET_REG_BITS(regOffset,bits) SET_REG_BITS(regOffset,bits)/* gets register offset and bits: a 32bit value. It set to logic '0' in the internal register the bits which given as an input example: GT_RESET_REG_BITS(0x840,BIT3 | BIT24 | BIT30) - set bits: 3,24 and 30 to logic '0' in register 0x840 while the other bits stays as is. */ /*#define GT_RESET_REG_BITS(regOffset,bits) ((*((volatile unsigned int*)(NONE_CACHEABLE(INTERNAL_REG_BASE_ADDR) | (regOffset)))) &= ~((unsigned int)WORD_SWAP(bits)))1 */#define GT_RESET_REG_BITS(regOffset,bits) RESET_REG_BITS(regOffset,bits)#define DEBUG_LED0_ON() WRITE_CHAR(memoryGetDeviceBaseAddress(DEVICE1) | 0x8000,0)#define DEBUG_LED1_ON() WRITE_CHAR(memoryGetDeviceBaseAddress(DEVICE1) | 0xc000,0)#define DEBUG_LED2_ON() WRITE_CHAR(memoryGetDeviceBaseAddress(DEVICE1) | 0x10000,0)#define DEBUG_LED0_OFF() WRITE_CHAR(memoryGetDeviceBaseAddress(DEVICE1) | 0x14000,0)#define DEBUG_LED1_OFF() WRITE_CHAR(memoryGetDeviceBaseAddress(DEVICE1) | 0x18000,0)#define DEBUG_LED2_OFF() WRITE_CHAR(memoryGetDeviceBaseAddress(DEVICE1) | 0x1c000,0)#endif /* __INCcoreh */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -