📄 optimip.m
字号:
% RECENTLY THERE HAS BEEN DEMONSTRATIONS OF BREAKAGE OF DIFFERENT CHAOTIC
% MAPS LIKE BERNOULLI and OTHER MAPS.SO HERE WE ARE GOING FOR NOVEL
% APPROACH IN THE SENSE OF MIXING VARIOUS MAPS IN DIFFERENT WAYS.HERE EVERY
% OTHER SAMPLE IS FROM DIFFERENT MAP.
clc; close all; clear all;
theta = 45;
z1 = 2; z2 = 3; z3 = 4;
X(1) = sin(theta*pi*(z1^1))^2;
X1(1) = sin(theta*pi*(z2^1))^2;
X2(1) = sin(theta*pi*(z3^1))^2;
for ii = 2:1:6000
X(ii) = sin(z1*asin(sqrt(X(ii-1))))^2;
X1(ii) = sin(z2*asin(sqrt(X1(ii-1))))^2;
X2(ii) = sin(z3*asin(sqrt(X2(ii-1))))^2;
end
for it = 1:1:length(X)-2
Fi(it) = X(it+2); Se(it) = X(it+1); Th(it) = X(it);
Fi2(it) = X1(it+2); Se2(it) = X1(it+1); Th2(it) = X1(it);
Fi3(it) = X2(it+2); Se3(it) = X2(it+1); Th3(it) = X2(it);
end
kg = 1;
for lg = 1:1:2000
JS(kg) = X(lg);
JS(kg+1) = X1(lg);
JS(kg+2) = X2(lg);
kg = kg + 3;
end
JJS = xcorr(JS,JS);
for mn = 1:1:length(JS)-2
UTF(mn) = JS(mn+2);
UTS(mn) = JS(mn+1);
UTT(mn) = JS(mn);
end
figure(1); subplot(211); plot(X); title('\bf F R maps order 2'); subplot(212); plot(Se,Fi,'m.');
figure(2); subplot(211); plot(X1); title('\bf F R maps order 3'); subplot(212); plot(Se2,Fi2,'r.');
figure(3); subplot(211); plot(X2); title('\bf F R maps order 4'); subplot(212); plot(Se3,Fi3,'k.');
figure(4); subplot(211); plot(JS); title('\bf F R maps order 5'); subplot(212); plot(UTF,UTS,'r.');
figure(5); plot3(Th,Se,Fi,'r.'); title('\bf F R 3D'); xlabel('\bf X(n)'); ylabel('\bf X(n+1)'); zlabel('\bf X(n+2)');
figure(6); plot3(Th2,Se2,Fi2,'r.'); title('\bf F R 3D'); xlabel('\bf X(n)'); ylabel('\bf X(n+1)'); zlabel('\bf X(n+2)');
figure(7); plot3(Th3,Se3,Fi3,'r.'); title('\bf F R 3D'); xlabel('\bf X(n)'); ylabel('\bf X(n+1)'); zlabel('\bf X(n+2)');
figure(9); plot3(UTT,UTS,UTF,'r.'); title('\bf F R 3D'); xlabel('\bf X(n)'); ylabel('\bf X(n+1)'); zlabel('\bf X(n+2)');
figure(10); plot(JJS); title('\bf A.C.Plot');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -