📄 diffdem.m
字号:
%THIS PROGRAM IS TO DEMONSRATE THE EXTREME SENSITIVITY OF CHAOTIC LOGISTIC
%MAP TO INITIAL CONDITION CHANGE IN BIFURCATION PARAMETER TO ORDER 10^-15
%SINCE MATLAB LOWER LIMIT IS (10^-15).same can be shown to any maps.
clc; close all; clear all;
format long g;
%--------------------------------------------------------------------------
% LOGISTIC MAP see B1 & BA1 difference
%--------------------------------------------------------------------------
A1 = .5; B1 = 3.999999999; phin1 = -0.35;
phi1(1) = ( B1*[(A1^2) - (phin1^2)] ) - A1;
for ih = 2:1:300
phi1(ih) = ( B1*[(A1^2) - (phi1(ih-1)^2)] ) - A1;
end
% THIS IS SECOND CHAOTIC LOGISTIC MAP
AA1 = .5; BA1 = 3.999999998; phinA1 = -0.35;
phiA1(1) = ( BA1*[(AA1^2) - (phinA1^2)] ) - AA1;
Time = 0;
for ih = 2:1:300
phiA1(ih) = ( BA1*[(AA1^2) - (phiA1(ih-1)^2)] ) - AA1;
Time(ih) = Time(ih-1) + 1;
end
%AUTO CORRELATION BETWEEN ABOVE TWO CHAOTIC MAPS WITH VERY MINUTE INITIAL
%VALUE DIFFERENCE OF 0.00001
Aff1 = xcorr(phi1);
Aff2 = xcorr(phiA1);
Dff = xcorr(phi1,phiA1);
figure(1);
subplot(211); plot(phi1); title('\bf L map with initial value of 3.999999999');
subplot(212); plot(phiA1); title('\bf L map with initial value of 3.999999998');
figure(2);
subplot(311); plot(Time,phi1,'r',Time,phiA1,'g'); title('\bf difference B/W maps with inital difference of 1.0e-009');
subplot(312); plot(Aff1,'r'); title('\bf AUTO CORRELATION OF FIRST MAP');
subplot(313); plot(Aff2,'g'); title('\bf AUTO CORRELATION OF SECOND MAP');
figure(3);
subplot(211); plot(phi1,phiA1,'r.'); title('\bf Synchronization between maps');
subplot(212); plot(Dff,'g.'); title('\bf Cross Correlation between two');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -