📄 svd.c
字号:
#include <stdio.h>
#include <math.h>
#include <tina/sys.h>
#include <tina/sysfuncs.h>
#include <tina/math.h>
/* smc 2/2/93 */
#ifdef Print
#undef Print
#endif
/* smc 2/2/93 */
#define Print(x) { if(out_text!=NULL) out_text(x); }
/* This macro is now redundant as function exists but kept incase
* function is bad re-implementation of macro */
#define Radius(u,v) ( (Au=Abs((u))) > (Av=Abs((v))) ? \
(Aw=Av/Au, Au*sqrt(1.+Aw*Aw)) : \
(Av ? (Aw=Au/Av, Av*sqrt(1.+Aw*Aw)) : 0.0) )
#define Sign(u,v) ( (v)>=0.0 ? Abs(u) : -Abs(u) )
#define Max(u,v) ( (u)>(v)? (u) : (v) )
#define Abs(x) ( (x)>0.0? (x) : (-(x)) )
static void (*out_text) () = NULL;
static double radius(double u, double v)
{
double Au, Av, Aw;
Au = Abs(u);
Av = Abs(v);
if (Au > Av)
{
Aw = Av / Au;
return (Au * sqrt(1. + Aw * Aw));
} else
{
if (Av)
{
Aw = Au / Av;
return (Av * sqrt(1. + Aw * Aw));
} else
return 0.0;
}
}
void svd_err_func(void (*text) ( /* ??? */ ))
{
out_text = text;
}
/*************************** SVDcmp *****************************************
* Given matrix A[m][n], m>=n, using svd decomposition A = U W V' to get *
* U[m][n], W[n][n] and V[n][n], where U occupies the position of A. *
* NOTE: if m<n, A should be filled up to square with zero rows. *
* A[m][n] has been destroyed by U[m][n] after the decomposition. *
****************************************************************************/
void SVDcmp(double **a, int m, int n, double *w, double **v)
{
/* BUG `nm' may be used uninitialized in this function */
int flag, i, its, j, jj, k, l, nm, nm1 = n - 1, mm1 = m - 1;
double c, f, h, s, x, y, z;
double anorm = 0.0, g = 0.0, scale = 0.0;
double *rv1;
if (m < n)
Print("SVDCMP: You must augment A with extra zero rows");
rv1 = (double *) ralloc((unsigned) n * sizeof(double));
/* Householder reduction to bidigonal form */
for (i = 0; i < n; i++)
{
l = i + 1;
rv1[i] = scale * g;
g = s = scale = 0.0;
if (i < m)
{
for (k = i; k < m; k++)
scale += Abs(a[k][i]);
if (scale)
{
for (k = i; k < m; k++)
{
a[k][i] /= scale;
s += a[k][i] * a[k][i];
}
f = a[i][i];
g = -Sign(sqrt(s), f);
h = f * g - s;
a[i][i] = f - g;
if (i != nm1)
{
for (j = l; j < n; j++)
{
for (s = 0.0, k = i; k < m; k++)
s += a[k][i] * a[k][j];
f = s / h;
for (k = i; k < m; k++)
a[k][j] += f * a[k][i];
}
}
for (k = i; k < m; k++)
a[k][i] *= scale;
}
}
w[i] = scale * g;
g = s = scale = 0.0;
if (i < m && i != nm1)
{
for (k = l; k < n; k++)
scale += Abs(a[i][k]);
if (scale)
{
for (k = l; k < n; k++)
{
a[i][k] /= scale;
s += a[i][k] * a[i][k];
}
f = a[i][l];
g = -Sign(sqrt(s), f);
h = f * g - s;
a[i][l] = f - g;
for (k = l; k < n; k++)
rv1[k] = a[i][k] / h;
if (i != mm1)
{
for (j = l; j < m; j++)
{
for (s = 0.0, k = l; k < n; k++)
s += a[j][k] * a[i][k];
for (k = l; k < n; k++)
a[j][k] += s * rv1[k];
}
}
for (k = l; k < n; k++)
a[i][k] *= scale;
}
}
anorm = Max(anorm, (Abs(w[i]) + Abs(rv1[i])));
}
/* Accumulation of right-hand transformations */
for (i = n - 1; i >= 0; i--)
{
if (i < nm1)
{
if (g)
{
/* double division to avoid possible underflow */
for (j = l; j < n; j++)
v[j][i] = (a[i][j] / a[i][l]) / g;
for (j = l; j < n; j++)
{
for (s = 0.0, k = l; k < n; k++)
s += a[i][k] * v[k][j];
for (k = l; k < n; k++)
v[k][j] += s * v[k][i];
}
}
for (j = l; j < n; j++)
v[i][j] = v[j][i] = 0.0;
}
v[i][i] = 1.0;
g = rv1[i];
l = i;
}
/* Accumulation of left-hand transformations */
for (i = n - 1; i >= 0; i--)
{
l = i + 1;
g = w[i];
if (i < nm1)
for (j = l; j < n; j++)
a[i][j] = 0.0;
if (g)
{
g = 1.0 / g;
if (i != nm1)
{
for (j = l; j < n; j++)
{
for (s = 0.0, k = l; k < m; k++)
s += a[k][i] * a[k][j];
f = (s / a[i][i]) * g;
for (k = i; k < m; k++)
a[k][j] += f * a[k][i];
}
}
for (j = i; j < m; j++)
a[j][i] *= g;
} else
for (j = i; j < m; j++)
a[j][i] = 0.0;
++a[i][i];
}
/* diagonalization of the bidigonal form */
for (k = n - 1; k >= 0; k--)
{ /* loop over singlar values */
for (its = 0; its < 30; its++)
{ /* loop over allowed iterations */
flag = 1;
for (l = k; l >= 0; l--)
{ /* test for splitting */
nm = l - 1; /* note that rv1[l] is always zero */
if (Abs(rv1[l]) + anorm == anorm)
{
flag = 0;
break;
}
if (Abs(w[nm]) + anorm == anorm)
break;
}
if (flag)
{
c = 0.0; /* cancellation of rv1[l], if l>1 */
s = 1.0;
for (i = l; i <= k; i++)
{
f = s * rv1[i];
if (Abs(f) + anorm != anorm)
{
g = w[i];
h = radius(f, g);
w[i] = h;
h = 1.0 / h;
c = g * h;
s = (-f * h);
for (j = 0; j < m; j++)
{
y = a[j][nm];
z = a[j][i];
a[j][nm] = y * c + z * s;
a[j][i] = z * c - y * s;
}
}
}
}
z = w[k];
if (l == k)
{ /* convergence */
if (z < 0.0)
{
w[k] = -z;
for (j = 0; j < n; j++)
v[j][k] = (-v[j][k]);
}
break;
}
if (its == 30)
Print("No convergence in 30 SVDCMP iterations");
x = w[l]; /* shift from bottom 2-by-2 minor */
nm = k - 1;
y = w[nm];
g = rv1[nm];
h = rv1[k];
f = ((y - z) * (y + z) + (g - h) * (g + h)) / (2.0 * h * y);
g = radius(f, 1.0);
/* next QR transformation */
f = ((x - z) * (x + z) + h * ((y / (f + Sign(g, f))) - h)) / x;
c = s = 1.0;
for (j = l; j <= nm; j++)
{
i = j + 1;
g = rv1[i];
y = w[i];
h = s * g;
g = c * g;
z = radius(f, h);
rv1[j] = z;
c = f / z;
s = h / z;
f = x * c + g * s;
g = g * c - x * s;
h = y * s;
y = y * c;
for (jj = 0; jj < n; jj++)
{
x = v[jj][j];
z = v[jj][i];
v[jj][j] = x * c + z * s;
v[jj][i] = z * c - x * s;
}
z = radius(f, h);
w[j] = z; /* rotation can be arbitrary id z=0 */
if (z)
{
z = 1.0 / z;
c = f * z;
s = h * z;
}
f = (c * g) + (s * y);
x = (c * y) - (s * g);
for (jj = 0; jj < m; jj++)
{
y = a[jj][j];
z = a[jj][i];
a[jj][j] = y * c + z * s;
a[jj][i] = z * c - y * s;
}
}
rv1[l] = 0.0;
rv1[k] = f;
w[k] = x;
}
}
rfree((void *) rv1);
}
/******************************* SVDbksb ****************************
* Given A[m][n], b[m], solves A x = b in the svd form U W V'x = b *
* so x = V U'b/W *
* No input quantities are destroyed, so sequential calling is OK *
********************************************************************/
void SVDbksb(double **u, double *w, double **v, int m, int n, double *b, double *x)
{
int jj, j, i;
double s, *tmp;
tmp = (double *) ralloc((unsigned) n * sizeof(double));
for (j = 0; j < n; j++)
{ /* calculate <U,b> */
s = 0.0;
if (w[j])
{ /* nonzero result only if nonzero w[j] */
for (i = 0; i < m; i++)
s += u[i][j] * b[i];
s /= w[j]; /* premultiplied by inverse W */
}
tmp[j] = s;
}
for (j = 0; j < n; j++)
{ /* V(U'b/W) */
s = 0.0;
for (jj = 0; jj < n; jj++)
s += v[j][jj] * tmp[jj];
x[j] = s;
}
rfree((void *) tmp);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -