📄 rfc1977.txt
字号:
of using a Configure-Nak to ask the peer to specify a larger dictionary.A. BSD Compress Algorithm This code is the core of a commercial workstation implementation. It was derived by transliterating the 4.*BSD compress command. It is unlikely to be of direct use in any system that does not have the same mixture of mbufs and STREAMS buffers. It may need to be retuned for CPU's other than RISC's with many registers and certain addressing modes. However, the code is the most accurate and unambiguous way of defining the changes to the BSD compress source required to apply it to a stream instead of a file. Note that it assumes a "short" contains 16 bits and an "int" contains at least 32 bits. Where it would matter if more than 32 bits were in an "int" or "long," __uint32_t is used instead./* Because this code is derived from the 4.3BSD compress source: * * * Copyright (c) 1985, 1986 The Regents of the University of California. * All rights reserved. * * This code is derived from software contributed to Berkeley by * James A. Woods, derived from original work by Spencer Thomas * and Joseph Orost. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * 3. All advertising materials mentioning features or use of this * software must display the following acknowledgement:Schryver Informational [Page 7]RFC 1977 PPP BSD Compress August 1996 * This product includes software developed by the University of * California, Berkeley and its contributors. * 4. Neither the name of the University nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS * OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. *//* ***************** */struct bsd_db { int totlen; /* length of this structure */ u_int hsize; /* size of the hash table */ u_char hshift; /* used in hash function */ u_char n_bits; /* current bits/code */ u_char debug; u_char unit; u_short mru; u_short seqno; /* # of last byte of packet */ u_int maxmaxcode; /* largest valid code */ u_int max_ent; /* largest code in use */ u_int in_count; /* uncompressed bytes */ u_int bytes_out; /* compressed bytes */ u_int ratio; /* recent compression ratio */ u_int checkpoint; /* when to next check ratio */ int clear_count; /* times dictionary cleared */ int incomp_count; /* incompressible packets */ int decomp_count; /* packets decompressed */ int overshoot; /* excess decompression buf */ int undershoot; /* insufficient decomp. buf */ u_short *lens; /* array of lengths of codes */ struct bsd_dict { union { /* hash value */ __uint32_t fcode; struct {#ifdef BSD_LITTLE_ENDIANSchryver Informational [Page 8]RFC 1977 PPP BSD Compress August 1996 u_short prefix; /* preceding code */ u_char suffix; /* last character of new code */ u_char pad;#else u_char pad; u_char suffix; /* last character of new code */ u_short prefix; /* preceding code */#endif } hs; } f; u_short codem1; /* output of hash table -1 */ u_short cptr; /* map code to hash table */ } dict[1];};#define BSD_OVHD (2+2) /* overhead/packet */#define MIN_BSD_BITS 9#define MAX_BSD_BITS 15 /* implementation limit */#define BSD_VERS 1 /* when shifted */#ifdef _KERNELextern struct bsd_db *pf_bsd_init(struct bsd_db*, int, int, int);extern int pf_bsd_comp(struct bsd_db*,u_char*,int,struct mbuf*,int);extern mblk_t* pf_bsd_decomp(struct bsd_db*, mblk_t*);extern void pf_bsd_incomp(struct bsd_db*, mblk_t*, u_int);#endif/* ***************** *//* PPP "BSD compress" compression * The differences between this compression and the classic BSD LZW * source are obvious from the requirement that the classic code worked * with files while this handles arbitrarily long streams that * are broken into packets. They are: * * When the code size expands, a block of junk is not emitted by * the compressor and not expected by the decompressor. * * New codes are not necessarily assigned every time an old * code is output by the compressor. This is because a packet * end forces a code to be emitted, but does not imply that a * new sequence has been seen. * * The compression ratio is checked at the first end of a packet * after the appropriate gap. Besides simplifying and speeding * things up, this makes it more likely that the transmitter * and receiver will agree when the dictionary is cleared when * compression is not going well. */Schryver Informational [Page 9]RFC 1977 PPP BSD Compress August 1996/* * the next two codes should not be changed lightly, as they must not * lie within the contiguous general code space. */#define CLEAR 256 /* table clear output code */#define FIRST 257 /* first free entry */#define LAST 255#define BSD_INIT_BITS MIN_BSD_BITS#define MAXCODE(b) ((1 << (b)) - 1)#define BADCODEM1 MAXCODE(MAX_BSD_BITS);#define BSD_HASH(prefix,suffix,hshift) ((((__uint32_t)(suffix)) \ << (hshift)) \ ^ (__uint32_t)(prefix))#define BSD_KEY(prefix,suffix) ((((__uint32_t)(suffix)) << 16) \ + (__uint32_t)(prefix))#define CHECK_GAP 10000 /* Ratio check interval */#define RATIO_SCALE_LOG 8#define RATIO_SCALE (1<<RATIO_SCALE_LOG)#define RATIO_MAX (0x7fffffff>>RATIO_SCALE_LOG)/* clear the dictionary */static voidpf_bsd_clear(struct bsd_db *db){ db->clear_count++; db->max_ent = FIRST-1; db->n_bits = BSD_INIT_BITS; db->ratio = 0; db->bytes_out = 0; db->in_count = 0; db->incomp_count = 0; db->decomp_count = 0; db->overshoot = 0; db->undershoot = 0; db->checkpoint = CHECK_GAP;}/* If the dictionary is full, then see if it is time to reset it. * * Compute the compression ratio using fixed-point arithmetic * with 8 fractional bits.Schryver Informational [Page 10]RFC 1977 PPP BSD Compress August 1996 * * Since we have an infinite stream instead of a single file, * watch only the local compression ratio. * * Since both peers must reset the dictionary at the same time even in * the absence of CLEAR codes (while packets are incompressible), they * must compute the same ratio. */static int /* 1=output CLEAR */pf_bsd_check(struct bsd_db *db){ register u_int new_ratio; if (db->in_count >= db->checkpoint) { /* age the ratio by limiting the size of the counts */ if (db->in_count >= RATIO_MAX || db->bytes_out >= RATIO_MAX) { db->in_count -= db->in_count/4; db->bytes_out -= db->bytes_out/4; } db->checkpoint = db->in_count + CHECK_GAP; if (db->max_ent >= db->maxmaxcode) { /* Reset the dictionary only if the ratio is * worse, or if it looks as if it has been * poisoned by incompressible data. * * This does not overflow, because * db->in_count <= RATIO_MAX. */ new_ratio = db->in_count<<RATIO_SCALE_LOG; if (db->bytes_out != 0) new_ratio /= db->bytes_out; if (new_ratio < db->ratio || new_ratio < 1*RATIO_SCALE) { pf_bsd_clear(db); return 1; } db->ratio = new_ratio; } } return 0;}/* Initialize the database.Schryver Informational [Page 11]RFC 1977 PPP BSD Compress August 1996 */struct bsd_db *pf_bsd_init(struct bsd_db *db, /* initialize this database */ int unit, /* for debugging */ int bits, /* size of LZW code word */ int mru) /* MRU for input, 0 for output*/{ register int i; register u_short *lens; register u_int newlen, hsize, hshift, maxmaxcode; switch (bits) { case 9: /* needs 82152 for both comp &*/ case 10: /* needs 84144 decomp*/ case 11: /* needs 88240 */ case 12: /* needs 96432 */ hsize = 5003; hshift = 4; break; case 13: /* needs 176784 */ hsize = 9001; hshift = 5; break; case 14: /* needs 353744 */ hsize = 18013; hshift = 6; break; case 15: /* needs 691440 */ hsize = 35023; hshift = 7; break; case 16: /* needs 1366160--far too much*/ /* hsize = 69001; */ /* and 69001 is too big for */ /* hshift = 8; */ /* cptr in struct bsd_db */ /* break; */ default: if (db) { if (db->lens) kern_free(db->lens); kern_free(db); } return 0; } maxmaxcode = MAXCODE(bits); newlen = sizeof(*db) + (hsize-1)*(sizeof(db->dict[0])); if (db) { lens = db->lens;Schryver Informational [Page 12]RFC 1977 PPP BSD Compress August 1996 if (db->totlen != newlen) { if (lens) kern_free(lens); kern_free(db); db = 0; } } if (!db) { db = (struct bsd_db*)kern_malloc(newlen); if (!db) return 0; if (mru == 0) { lens = 0; } else { lens = (u_short*)kern_malloc((maxmaxcode+1) * sizeof(*lens)); if (!lens) { kern_free(db); return 0; } i = LAST+1; while (i != 0) lens[--i] = 1; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -