📄 megdemo.m
字号:
%% load MEG data (see NeuroImage 2004 paper)load megdata%% Estimation % Reduce dimension from 122 ordinal signals to 20% Resample 25 times using random initial conditions and bootstrapping% (use FastICA parameters: kurtosis as non-linearity,% symmetric estimation approachsR=icassoEst('both', megdata, 25, 'lastEig', 20, 'g', 'pow3', ... 'approach', 'symm');%% sR contains now estimates. Next %- dissimilarity measure between them is formed%- estimates are clustered%- a projection for the visualization is computed%%% Default similarity measure, clustering and projection:sR=icassoExp(sR);%%% Visualization & returning resultsdisp('Launch Icasso visualization supposing 20 estimate-clusters.');disp('Show demixing matrix rows.'); disp('Press any key...');pause;icassoShow(sR,'L',20,'estimate','demixing');disp('Launch Icasso visualization supposing 20 estimate-clusters.');disp('Show IC source estimates (default), reduce number of lines'); disp('Collect results.');disp('Press any key...');pause;[iq,A,W,S]=icassoShow(sR,'L',20,'colorlimit',[.8 .9]);%%% plot the "best two" estimate into figure 6[tmp,i]=sort(-iq)figure(6)signalplot(S(i(1:2),:));title(sprintf('(Centrotypes) of best two estimates (labels %d and %d)',i(1),i(2))); %%% plot rows of W that belong to estimate-cluster number 2 (are%%% around centrotype with label number 2')% Find estimates that belong to cluster label=2 when L=20%estimate-clusters are selectedL=20; label=2;% Indices to the estimates in Icasso data structidx=find(sR.cluster.partition(L,:)==label)% Find rows in the demixing matrix w=icassoGet(sR,'demixingmatrix',idx);% Plot the signalsfigure(7);signalplot(w);title(['Rows of W that belong to estimate-cluster number' num2str(label)]);%% Plot estimates of S that belong to estimate-cluster number label=2figure(8);s=icassoGet(sR,'source',idx);signalplot(s);title(['Estimates that belong to estimate-cluster number' num2str(label)])%% Next we compare the centrotype and mean (centroid) of an estimate-cluster% Compute mean estimate for estimate cluster number label=2% remember that the sign may change arbitrarily: function% 'parallelize' takes care of this:% compute mean of estimatesm=mean(parallelize(s',s(1,:)')');% get the centrotypeindex2centrotype=icassoIdx2Centrotype(sR,'index',idx);c=icassoGet(sR,'source',index2centrotype);figure(9)plot(c);title(['Centrotype of estimate-cluster' num2str(label)]);figure(10);plot(m);title(['Mean of estimate-cluster ' num2str(label)])
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -