⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 icassostability.m

📁 一个经典的ICA算法的程序包
💻 M
字号:
function [Iq,in_avg,ext_avg,in_min,ext_max]=icassoStability(sR,L,graphmode)%function Iq=icassoStability(sR,L,graphmode)%%PURPOSE%%To compute and/or plot the stability (quality) indices of the ICA%estimate-clusters. %% Iq=avg(intra-cluster similarity) - avg(extra-cluster similarity)%%See publication Himberg et al. (2004), "Validating the independent%components of neuroimaging time-series via clustering and%visualization". NeuroImage, 22:3(1214-1222). Ideally, each ICA%estimate-cluster should have Iq=1. The smaller the value is, the%less stable (compact and isolated) the estimate-cluster is.     %%EXAMPLES OF BASIC USAGE%%   Iq=icassoStability(sR);%%returns the stability index for each estimate (centrotype) using%the default number of estimate-clusters. %%   Iq=icassoStability(sR,13,'plotindex');%%...same as previous but also plots the values (in rank order) and%uses 13 estimate clusters instead of default. %%INPUT%%[An argument in brackets is optional. If it isn't  given or it's% an empty matrix/string, the function will use a default value.] %% sR          (struct) Icasso result data structure; clustering%              must be readily computed. % [L]         (scalar) number of clusters, default: (reduced) data%              dimension  % [graphmode] (string) 'none' (default) | 'plotindex' | 'plotstat'   %%OUTPUTS%% Iq  (Lx1 matrix) Iq(C) contains the index value for estimate C% (actually estimate-cluster C)%%DETAILS%%The intra-cluster similarities for cluster C mean the mutual%similarities between the estimates in C, and the extra-cluster%similarities for C are the similarities between the estimates in C%and the estimates not in C. The index is the average intra-cluster%similarity subtracted by the average intra-cluster similarity. %%In default graph mode 'none'% The function computes the index and returns it. No graphical% output. Iq(C) contains the index for cluster C (That is, for% estimates sR.cluster.partition(L,:)==C.%%In graph mode 'plotindex'% The function computes the quality index as in mode 'none' % and plots the index in the active axis (gca) as follows: % The X-axis shows the value of the index for clusters. The clusters% are ranked on the Y-axis in descending order according to the% index. The Y-axis legend shows the cluster number (the same as in% sR.cluster.partition(L,:)). The values are indicated by black% dots connected into each other by a dotted line. %%In graph mode 'plotstat'% As previous one but instead of the index,% some cluster statistics are shown: %  Light red  indicates the average intra-cluster similarity for a cluster %  Light blue               average extra-cluster%  Clear red                minimum intra-cluster %  Clear blue               maximum extra-cluster %%SEE ALSO% clusterquality% icassoViz% icassoShow%COPYRIGHT NOTICE%This function is a part of Icasso software library%Copyright (C) 2003-2005 Johan Himberg%%This program is free software; you can redistribute it and/or%modify it under the terms of the GNU General Public License%as published by the Free Software Foundation; either version 2%of the License, or any later version.%%This program is distributed in the hope that it will be useful,%but WITHOUT ANY WARRANTY; without even the implied warranty of%MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the%GNU General Public License for more details.%%You should have received a copy of the GNU General Public License%along with this program; if not, write to the Free Software%Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.% ver 1.2 100501 johanif nargin<2|isempty(L),  L=icassoGet(sR,'rdim');  disp([sprintf('\n') 'Number of estimate-clusters not given: using (reduced)' ...	   ' data dimension.']);endif nargin<3 | isempty(graphmode),  graphmode='none';endclusternumber=1:L;partition=sR.cluster.partition(L,:);for i=1:L,  NofEstimates(i)=sum(partition==i);end% compute cluster quality index[Iq,in_avg,ext_avg]=clusterquality('mean',sR.cluster.similarity,partition);[tmp,in_min,ext_max]=clusterquality('minmax',sR.cluster.similarity,partition);% Sort entries according to score[tmp,order]=sort(-Iq); score=Iq(order);in_avg=in_avg(order); ext_avg=ext_avg(order); in_min=in_min(order); ext_max=ext_max(order);clusternumber=clusternumber(order);NofEstimates=NofEstimates(order);% make tick mark labelsfor i=1:L,  ticklabel{i}=num2str(clusternumber(i));end% Plot switch lower(graphmode) case 'none'  return; case 'plotindex'  cla reset;  h_score=plot(score,1:L,'o:');  set(h_score,'color','k','markersize',8,'markerfacecolor','k');  set(gca,'ytick',1:L,'yticklabel',ticklabel,'ydir','reve');  ax=axis;     if ax(1)<0,    axis([ax(1) 1  0.5 L+.5]);   else    axis([0 1  0.5 L+.5]);   end    grid on;  xlabel('I_q=avg(S(i)_{int})-avg(S(i)_{ext})');  title('Stability index (I_q) for ICA estimate-clusters'); case 'plotstat'  cla reset;    h_in_avg=barh(in_avg,0.7); hold on  h_ext_max=barh(-ext_max,0.35);   h_in_min=barh(in_min,0.35);   h_ext_avg=barh(-ext_avg,0.7);     axis on;  set(h_in_avg,'facecolor',[1 0.7 0.7]); hold on;  set(h_in_min,'facecolor',[1 0 0]);  set(h_ext_avg,'facecolor',[0.7 0.7 1]);  set(h_ext_max,'facecolor',[0 0 1]);  axis([-1 1 0.5 L+.5]);     set(gca,'ytick',1:L,'yticklabel',ticklabel,...	  'ydir','reve','xtick',[-1 -.5 0 .5 1],...	  'xgrid','on',...	  'xticklabel',{'1' '0.5 ' '0' '0.5' '1'});    title('Statistics on within- and between-cluster similarities');  xlabel('clusters are ordered according to I_q=avg(S(i)_{int})-avg(S(i)_{ext})');   legend([h_in_avg(1),h_ext_avg(1),h_in_min(1),h_ext_max(1)],...	 {'mean S_{in}' 'mean S_{ex}' 'min S_{in}' 'max S_{ex}'},-1); otherwise  error('Graphmode must be ''none'',''plotindex'' or ''plotstat''.');endylabel('Label')  

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -