📄 basic_op.c
字号:
*
* If var2 is zero simply return L_var1.
*
* If var2 is negative perform a arithmetic right shift (L_shr)
* of L_var1 by (-var2)+1. Add the LS bit of the result to
* L_var1 shifted right (L_shr) by -var2.
*
* Note that there is no constraint on var2, so if var2 is
* -0xffff 8000 then -var2 is 0x0000 8000, not 0x0000 7fff.
* This is the reason the L_shl function is used.
*
*
* KEYWORDS:
*
*************************************************************************/
Word32 L_shift_r(Word32 L_var1, Word16 var2)
{
Word32 L_Out, L_rnd;
if (var2 < -31)
{
L_Out = 0;
}
else if (var2 < 0)
{
/* right shift */
L_rnd = L_shl(L_var1, (Word16)(var2 + 1)) & 0x1;
L_Out = L_add(L_shl(L_var1, var2), L_rnd);
#ifdef WMOPS_FX
counter_fx.L_shl-=2;
counter_fx.L_add--;
#endif
}
else
{
L_Out = L_shl(L_var1, var2);
#ifdef WMOPS_FX
counter_fx.L_shl--;
#endif
}
#ifdef WMOPS_FX
counter_fx.L_shift_r++;
#endif
return (L_Out);
}
/***************************************************************************
*
* FUNCTION NAME: L_shl
*
* PURPOSE:
*
* Arithmetic shift left (or right).
* Arithmetically shift the input left by var2. If var2 is
* negative then an arithmetic shift right (L_shr) of L_var1 by
* -var2 is performed.
*
* INPUTS:
*
* var2
* 16 bit short signed integer (Word16) whose value
* falls in the range 0xffff 8000 <= var2 <= 0x0000 7fff.
* L_var1
* 32 bit long signed integer (Word32) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* L_Out
* 32 bit long signed integer (Word32) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
*
*
* IMPLEMENTATION:
*
* Arithmetically shift the 32 bit input left by var2. This
* operation maintains the sign of the input number. If var2 is
* negative then an arithmetic shift right (L_shr) of L_var1 by
* -var2 is performed. See description of L_shr for details.
*
* Equivalent to the Full-Rate GSM ">> n" operation. Note that
* ANSI-C does not guarantee operation of the C ">>" or "<<"
* operator for negative numbers.
*
* KEYWORDS: shift, arithmetic shift left,
*
*************************************************************************/
Word32 L_shl(Word32 L_var1, Word16 var2)
{
Word32 L_Mask, L_Out;
int i, iOverflow = 0;
if (var2 == 0 || L_var1 == 0)
{
L_Out = L_var1;
}
else if (var2 < 0)
{
if (var2 <= -31)
{
if (L_var1 > 0)
L_Out = 0;
else
L_Out = 0xffffffffL;
}
else
{
L_Out = L_shr(L_var1, (Word16)(-var2));
#ifdef WMOPS_FX
counter_fx.L_shr--;
#endif
}
}
else
{
if (var2 >= 31)
iOverflow = 1;
else
{
if (L_var1 < 0)
L_Mask = LW_SIGN; /* sign bit mask */
else
L_Mask = 0x0;
L_Out = L_var1;
for (i = 0; i < var2 && !iOverflow; i++)
{
/* check the sign bit */
L_Out = (L_Out & 0x7fffffffL) << 1;
if ((L_Mask ^ L_Out) & LW_SIGN)
iOverflow = 1;
}
}
if (iOverflow)
{
/* saturate */
if (L_var1 > 0)
L_Out = LW_MAX;
else
L_Out = LW_MIN;
giOverflow = 1;
}
}
#ifdef WMOPS_FX
counter_fx.L_shl++;
#endif
return (L_Out);
}
/***************************************************************************
*
* FUNCTION NAME: L_shr
*
* PURPOSE:
*
* Arithmetic shift right (or left).
* Arithmetically shift the input right by var2. If var2 is
* negative then an arithmetic shift left (shl) of var1 by
* -var2 is performed.
*
* INPUTS:
*
* var2
* 16 bit short signed integer (Word16) whose value
* falls in the range 0xffff 8000 <= var2 <= 0x0000 7fff.
* L_var1
* 32 bit long signed integer (Word32) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* L_Out
* 32 bit long signed integer (Word32) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
*
*
* IMPLEMENTATION:
*
* Arithmetically shift the input right by var2. This
* operation maintains the sign of the input number. If var2 is
* negative then an arithmetic shift left (shl) of L_var1 by
* -var2 is performed. See description of L_shl for details.
*
* The input is a 32 bit number, as is the output.
*
* Equivalent to the Full-Rate GSM ">> n" operation. Note that
* ANSI-C does not guarantee operation of the C ">>" or "<<"
* operator for negative numbers.
*
* KEYWORDS: shift, arithmetic shift right,
*
*************************************************************************/
Word32 L_shr(Word32 L_var1, Word16 var2)
{
Word32 L_Mask, L_Out;
if (var2 == 0 || L_var1 == 0)
{
L_Out = L_var1;
}
else if (var2 < 0)
{
/* perform a left shift */
/*----------------------*/
if (var2 <= -31)
{
/* saturate */
if (L_var1 > 0)
{
L_Out = LW_MAX;
giOverflow = 1;
}
else
{
L_Out = LW_MIN;
giOverflow = 1;
}
}
else
{
L_Out = L_shl(L_var1, (Word16)(-var2)); // OP_COUNT(-2);
#ifdef WMOPS_FX
counter_fx.L_shl--;
#endif
}
}
else
{
if (var2 >= 31)
{
if (L_var1 > 0)
L_Out = 0;
else
L_Out = 0xffffffffL;
}
else
{
L_Mask = 0;
if (L_var1 < 0)
{
L_Mask = ~L_Mask << (32 - var2);
}
L_var1 >>= var2;
L_Out = L_Mask | L_var1;
}
}
#ifdef WMOPS_FX
counter_fx.L_shr++;
#endif
return (L_Out);
}
/***************************************************************************
*
* FUNCTION NAME: L_sub
*
* PURPOSE:
*
* Perform the subtraction of the two 32 bit input variables with
* saturation.
*
* INPUTS:
*
* L_var1
* 32 bit long signed integer (Word32) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
* L_var2
* 32 bit long signed integer (Word32) whose value
* falls in the range
* 0x8000 0000 <= L_var2 <= 0x7fff ffff.
*
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* L_Out
* 32 bit long signed integer (Word32) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
*
* IMPLEMENTATION:
*
* Perform the subtraction of the two 32 bit input variables with
* saturation.
*
* L_Out = L_var1 - L_var2
*
* L_Out is set to 0x7fff ffff if the operation results in an
* overflow. L_Out is set to 0x8000 0000 if the operation
* results in an underflow.
*
* KEYWORDS: sub, subtraction
*
*************************************************************************/
Word32 L_sub(Word32 L_var1, Word32 L_var2)
{
Word32 L_Sum;
double dSum;
dSum = (double) L_var1 - (double) L_var2;
L_Sum = L_var1 - L_var2;
if (dSum != L_Sum)
{
/* overflow occurred */
L_Sum = L_saturate(dSum);
#ifdef WMOPS_FX
counter_fx.L_saturate--;
#endif
}
#ifdef WMOPS_FX
counter_fx.L_sub++;
#endif
return (L_Sum);
}
/***************************************************************************
*
* FUNCTION NAME:mac_r
*
* PURPOSE:
*
* Multiply accumulate and round. Fractionally multiply two 16
* bit numbers together with saturation. Add that result to
* the 32 bit input with saturation. Finally round the result
* into a 16 bit number.
*
*
* INPUTS:
*
* var1
* 16 bit short signed integer (Word16) whose value
* falls in the range 0xffff 8000 <= var1 <= 0x0000 7fff.
* var2
* 16 bit short signed integer (Word16) whose value
* falls in the range 0xffff 8000 <= var2 <= 0x0000 7fff.
* L_var3
* 32 bit long signed integer (Word32) whose value
* falls in the range
* 0x8000 0000 <= L_var2 <= 0x7fff ffff.
*
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* swOut
* 16 bit short signed integer (Word16) whose value
* falls in the range
* 0xffff 8000 <= swOut <= 0x0000 7fff.
*
* IMPLEMENTATION:
*
* Fractionally multiply two 16 bit numbers together with
* saturation. The only numbers which will cause saturation on
* the multiply are 0x8000 * 0x8000.
*
* Add that result to the 32 bit input with saturation.
* Round the 32 bit result by adding 0x0000 8000 to the input.
* The result may overflow due to the add. If so, the result
* is saturated. The 32 bit rounded number is then shifted
* down 16 bits and returned as a Word16.
*
* Please note that this is not a true multiply accumulate as
* most processors would implement it. The 0x8000*0x8000
* causes and overflow for this instruction. On most
* processors this would cause an overflow only if the 32 bit
* input added to it were positive or zero.
*
* KEYWORDS: mac, multiply accumulate, macr
*
*************************************************************************/
Word16 mac_r(Word32 L_var3, Word16 var1, Word16 var2)
{
return (round32(L_mac(L_var3, var1, var2)));
}
/***************************************************************************
*
* FUNCTION NAME: msu_r
*
* PURPOSE:
*
* Multiply subtract and round. Fractionally multiply two 16
* bit numbers together with saturation. Subtract that result from
* the 32 bit input with saturation. Finally round the result
* into a 16 bit number.
*
*
* INPUTS:
*
* var1
* 16 bit short signed integer (Word16) whose value
* falls in the range 0xffff 8000 <= var1 <= 0x0000 7fff.
* var2
* 16 bit short signed integer (Word16) whose value
* falls in the range 0xffff 8000 <= var2 <= 0x0000 7fff.
* L_var3
* 32 bit long signed integer (Word32) whose value
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -