📄 mathevrc.c
字号:
* Perform a fractional multipy of the two 16 bit input numbers
* with saturation. Output a 32 bit number.
*
* INPUTS:
*
* var1
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var1 <= 0x0000 7fff.
* var2
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var2 <= 0x0000 7fff.
*
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* L_Out
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
*
* IMPLEMENTATION:
*
* Multiply the two the two 16 bit input numbers. If the
* result is within this range, left shift the result by one
* and output the 32 bit number. The only possible overflow
* occurs when var1==var2==-0x8000. In this case output
* 0x7fff ffff.
*
* KEYWORDS: multiply, mult, mpy
*
*************************************************************************/
Longword L_mult(Shortword var1, Shortword var2)
{
Longword L_product;
OP_COUNT(1); /* Complexity Count -- LT 6/96 */
if (var1 == SW_MIN && var2 == SW_MIN)
{
L_product = LW_MAX; /* overflow */
giOverflow = 1;
}
else
{
L_product = (Longword) var1 *var2; /* integer multiply */
L_product = L_product << 1;
}
return (L_product);
}
/***************************************************************************
*
* FUNCTION NAME: L_negate
*
* PURPOSE:
*
* Negate the 32 bit input. 0x8000 0000's negated value is
* 0x7fff ffff.
*
* INPUTS:
*
* L_var1
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
*
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* L_Out
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0001 <= L_var1 <= 0x7fff ffff.
*
* KEYWORDS: negate, negative
*
*************************************************************************/
Longword L_negate(Longword L_var1)
{
Longword L_Out;
OP_COUNT(2); /* Complexity Count -- LT 6/96 */
if (L_var1 == LW_MIN)
{
L_Out = LW_MAX;
giOverflow = 1;
}
else
L_Out = -L_var1;
return (L_Out);
}
/***************************************************************************
*
* FUNCTION NAME: L_shift_r
*
* PURPOSE:
*
* Shift and round. Perform a shift right. After shifting, use
* the last bit shifted out of the LSB to round the result up
* or down.
*
* INPUTS:
*
* L_var1
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
* var2
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var2 <= 0x0000 7fff.
*
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* L_var1
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
*
*
* IMPLEMENTATION:
*
* Shift and round. Perform a shift right. After shifting, use
* the last bit shifted out of the LSB to round the result up
* or down. This is just like shift_r above except that the
* input/output is 32 bits as opposed to 16.
*
* if var2 is positve perform a arithmetic left shift
* with saturation (see L_shl() above).
*
* If var2 is zero simply return L_var1.
*
* If var2 is negative perform a arithmetic right shift (L_shr)
* of L_var1 by (-var2)+1. Add the LS bit of the result to
* L_var1 shifted right (L_shr) by -var2.
*
* Note that there is no constraint on var2, so if var2 is
* -0xffff 8000 then -var2 is 0x0000 8000, not 0x0000 7fff.
* This is the reason the L_shl function is used.
*
*
* KEYWORDS:
*
*************************************************************************/
Longword L_shift_r(Longword L_var1, Shortword var2)
{
Longword L_Out, L_rnd;
OP_COUNT(3); /* Complexity Count -- LT 6/96 */
if (var2 < -31)
{
L_Out = 0;
}
else if (var2 < 0)
{
/* right shift */
L_rnd = L_shl(L_var1, var2 + 1) & 0x1; OP_COUNT(-2); /* LT 6/96 */
L_Out = L_add(L_shl(L_var1, var2), L_rnd); OP_COUNT(-2); /* LT 6/96 */
}
else
{
L_Out = L_shl(L_var1, var2); OP_COUNT(-2); /* LT 6/96 */
}
return (L_Out);
}
/***************************************************************************
*
* FUNCTION NAME: L_shl
*
* PURPOSE:
*
* Arithmetic shift left (or right).
* Arithmetically shift the input left by var2. If var2 is
* negative then an arithmetic shift right (L_shr) of L_var1 by
* -var2 is performed.
*
* INPUTS:
*
* var2
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var2 <= 0x0000 7fff.
* L_var1
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* L_Out
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
*
*
* IMPLEMENTATION:
*
* Arithmetically shift the 32 bit input left by var2. This
* operation maintains the sign of the input number. If var2 is
* negative then an arithmetic shift right (L_shr) of L_var1 by
* -var2 is performed. See description of L_shr for details.
*
* Equivalent to the Full-Rate GSM ">> n" operation. Note that
* ANSI-C does not guarantee operation of the C ">>" or "<<"
* operator for negative numbers.
*
* KEYWORDS: shift, arithmetic shift left,
*
*************************************************************************/
Longword L_shl(Longword L_var1, Shortword var2)
{
Longword L_Mask, L_Out;
int i, iOverflow = 0;
OP_COUNT(2); /* Complexity Count -- LT 6/96 */
if (var2 == 0 || L_var1 == 0)
{
L_Out = L_var1;
}
else if (var2 < 0)
{
if (var2 <= -31)
{
if (L_var1 > 0)
L_Out = 0;
else
L_Out = 0xffffffffL;
}
else
{
L_Out = L_shr(L_var1, -var2);
OP_COUNT(-2); /* Complexity Count -- LT 6/96 */
}
}
else
{
if (var2 >= 31)
iOverflow = 1;
else
{
if (L_var1 < 0)
L_Mask = LW_SIGN; /* sign bit mask */
else
L_Mask = 0x0;
L_Out = L_var1;
for (i = 0; i < var2 && !iOverflow; i++)
{
/* check the sign bit */
L_Out = (L_Out & 0x7fffffffL) << 1;
if ((L_Mask ^ L_Out) & LW_SIGN)
iOverflow = 1;
}
}
if (iOverflow)
{
/* saturate */
if (L_var1 > 0)
L_Out = LW_MAX;
else
L_Out = LW_MIN;
giOverflow = 1;
}
}
return (L_Out);
}
/***************************************************************************
*
* FUNCTION NAME: L_shr
*
* PURPOSE:
*
* Arithmetic shift right (or left).
* Arithmetically shift the input right by var2. If var2 is
* negative then an arithmetic shift left (shl) of var1 by
* -var2 is performed.
*
* INPUTS:
*
* var2
* 16 bit short signed integer (Shortword) whose value
* falls in the range 0xffff 8000 <= var2 <= 0x0000 7fff.
* L_var1
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* L_Out
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
*
*
* IMPLEMENTATION:
*
* Arithmetically shift the input right by var2. This
* operation maintains the sign of the input number. If var2 is
* negative then an arithmetic shift left (shl) of L_var1 by
* -var2 is performed. See description of L_shl for details.
*
* The input is a 32 bit number, as is the output.
*
* Equivalent to the Full-Rate GSM ">> n" operation. Note that
* ANSI-C does not guarantee operation of the C ">>" or "<<"
* operator for negative numbers.
*
* KEYWORDS: shift, arithmetic shift right,
*
*************************************************************************/
Longword L_shr(Longword L_var1, Shortword var2)
{
Longword L_Mask, L_Out;
OP_COUNT(2); /* Complexity Count -- LT 6/96 */
if (var2 == 0 || L_var1 == 0)
{
L_Out = L_var1;
}
else if (var2 < 0)
{
/* perform a left shift */
/*----------------------*/
if (var2 <= -31)
{
/* saturate */
if (L_var1 > 0)
{
L_Out = LW_MAX;
giOverflow = 1;
}
else
{
L_Out = LW_MIN;
giOverflow = 1;
}
}
else
{
L_Out = L_shl(L_var1, -var2);
OP_COUNT(-2); /* Complexity Count -- LT 6/96 */
}
}
else
{
if (var2 >= 31)
{
if (L_var1 > 0)
L_Out = 0;
else
L_Out = 0xffffffffL;
}
else
{
L_Mask = 0;
if (L_var1 < 0)
{
L_Mask = ~L_Mask << (32 - var2);
}
L_var1 >>= var2;
L_Out = L_Mask | L_var1;
}
}
return (L_Out);
}
/***************************************************************************
*
* FUNCTION NAME: L_sub
*
* PURPOSE:
*
* Perform the subtraction of the two 32 bit input variables with
* saturation.
*
* INPUTS:
*
* L_var1
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
* L_var2
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0000 <= L_var2 <= 0x7fff ffff.
*
* OUTPUTS:
*
* none
*
* RETURN VALUE:
*
* L_Out
* 32 bit long signed integer (Longword) whose value
* falls in the range
* 0x8000 0000 <= L_var1 <= 0x7fff ffff.
*
* IMPLEMENTATION:
*
* Perform the subtraction of the two 32 bit input variables with
* saturation.
*
* L_Out = L_var1 - L_var2
*
* L_Out is set to 0x7fff ffff if the operation results in an
* overflow. L_Out is set to 0x8000 0000 if the operation
* results in an underflow.
*
* KEYWORDS: sub, subtraction
*
*************************************************************************/
Longword L_sub(Longword L_var1, Longword L_var2)
{
Longword L_Sum;
double dSum;
OP_COUNT(2); /* Complexity Count -- LT 6/96 */
dSum = (double) L_var1 - (double) L_var2;
L_Sum = L_var1 - L_var2;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -