📄 path.c
字号:
{
INT temp;
/* Convert points to device coordinates */
corners[0].x=x1;
corners[0].y=y1;
corners[1].x=x2;
corners[1].y=y2;
CoordLPtoDP(dc, &corners[0]);
CoordLPtoDP(dc, &corners[1]);
/* Make sure first corner is top left and second corner is bottom right */
if(corners[0].x>corners[1].x)
{
temp=corners[0].x;
corners[0].x=corners[1].x;
corners[1].x=temp;
}
if(corners[0].y>corners[1].y)
{
temp=corners[0].y;
corners[0].y=corners[1].y;
corners[1].y=temp;
}
/* In GM_COMPATIBLE, don't include bottom and right edges */
if(dc->Dc_Attr.iGraphicsMode==GM_COMPATIBLE)
{
corners[1].x--;
corners[1].y--;
}
return TRUE;
}
/* PATH_AddFlatBezier
*
*/
BOOL
FASTCALL
PATH_AddFlatBezier ( GdiPath *pPath, POINT *pt, BOOL closed )
{
POINT *pts;
INT no, i;
pts = GDI_Bezier( pt, 4, &no );
if ( !pts ) return FALSE;
for(i = 1; i < no; i++)
PATH_AddEntry(pPath, &pts[i], (i == no-1 && closed) ? PT_LINETO | PT_CLOSEFIGURE : PT_LINETO);
ExFreePool(pts);
return TRUE;
}
/* PATH_FlattenPath
*
* Replaces Beziers with line segments
*
*/
BOOL
FASTCALL
PATH_FlattenPath(GdiPath *pPath)
{
GdiPath newPath;
INT srcpt;
RtlZeroMemory(&newPath, sizeof(newPath));
newPath.state = PATH_Open;
for(srcpt = 0; srcpt < pPath->numEntriesUsed; srcpt++) {
switch(pPath->pFlags[srcpt] & ~PT_CLOSEFIGURE) {
case PT_MOVETO:
case PT_LINETO:
PATH_AddEntry(&newPath, &pPath->pPoints[srcpt], pPath->pFlags[srcpt]);
break;
case PT_BEZIERTO:
PATH_AddFlatBezier(&newPath, &pPath->pPoints[srcpt-1], pPath->pFlags[srcpt+2] & PT_CLOSEFIGURE);
srcpt += 2;
break;
}
}
newPath.state = PATH_Closed;
PATH_AssignGdiPath(pPath, &newPath);
PATH_EmptyPath(&newPath);
return TRUE;
}
/* PATH_PathToRegion
*
* Creates a region from the specified path using the specified polygon
* filling mode. The path is left unchanged. A handle to the region that
* was created is stored in *pHrgn. If successful, TRUE is returned; if an
* error occurs, SetLastError is called with the appropriate value and
* FALSE is returned.
*/
BOOL
FASTCALL
PATH_PathToRegion ( GdiPath *pPath, INT nPolyFillMode, HRGN *pHrgn )
{
int numStrokes, iStroke, i;
INT *pNumPointsInStroke;
HRGN hrgn = 0;
ASSERT(pPath!=NULL);
ASSERT(pHrgn!=NULL);
PATH_FlattenPath ( pPath );
/* FIXME: What happens when number of points is zero? */
/* First pass: Find out how many strokes there are in the path */
/* FIXME: We could eliminate this with some bookkeeping in GdiPath */
numStrokes=0;
for(i=0; i<pPath->numEntriesUsed; i++)
if((pPath->pFlags[i] & ~PT_CLOSEFIGURE) == PT_MOVETO)
numStrokes++;
/* Allocate memory for number-of-points-in-stroke array */
pNumPointsInStroke=(int *)ExAllocatePoolWithTag(PagedPool, sizeof(int) * numStrokes, TAG_PATH);
if(!pNumPointsInStroke)
{
// SetLastError(ERROR_NOT_ENOUGH_MEMORY);
return FALSE;
}
/* Second pass: remember number of points in each polygon */
iStroke=-1; /* Will get incremented to 0 at beginning of first stroke */
for(i=0; i<pPath->numEntriesUsed; i++)
{
/* Is this the beginning of a new stroke? */
if((pPath->pFlags[i] & ~PT_CLOSEFIGURE) == PT_MOVETO)
{
iStroke++;
pNumPointsInStroke[iStroke]=0;
}
pNumPointsInStroke[iStroke]++;
}
/* Create a region from the strokes */
/* hrgn=CreatePolyPolygonRgn(pPath->pPoints, pNumPointsInStroke,
numStrokes, nPolyFillMode); FIXME: reinclude when region code implemented */
if(hrgn==(HRGN)0)
{
// SetLastError(ERROR_NOT_ENOUGH_MEMORY);
return FALSE;
}
/* Free memory for number-of-points-in-stroke array */
ExFreePool(pNumPointsInStroke);
/* Success! */
*pHrgn=hrgn;
return TRUE;
}
/* PATH_EmptyPath
*
* Removes all entries from the path and sets the path state to PATH_Null.
*/
VOID
FASTCALL
PATH_EmptyPath ( GdiPath *pPath )
{
ASSERT(pPath!=NULL);
pPath->state=PATH_Null;
pPath->numEntriesUsed=0;
}
/* PATH_AddEntry
*
* Adds an entry to the path. For "flags", pass either PT_MOVETO, PT_LINETO
* or PT_BEZIERTO, optionally ORed with PT_CLOSEFIGURE. Returns TRUE if
* successful, FALSE otherwise (e.g. if not enough memory was available).
*/
BOOL
FASTCALL
PATH_AddEntry ( GdiPath *pPath, const POINT *pPoint, BYTE flags )
{
ASSERT(pPath!=NULL);
/* FIXME: If newStroke is true, perhaps we want to check that we're
* getting a PT_MOVETO
*/
/* Check that path is open */
if ( pPath->state != PATH_Open )
return FALSE;
/* Reserve enough memory for an extra path entry */
if ( !PATH_ReserveEntries(pPath, pPath->numEntriesUsed+1) )
return FALSE;
/* Store information in path entry */
pPath->pPoints[pPath->numEntriesUsed]=*pPoint;
pPath->pFlags[pPath->numEntriesUsed]=flags;
/* If this is PT_CLOSEFIGURE, we have to start a new stroke next time */
if((flags & PT_CLOSEFIGURE) == PT_CLOSEFIGURE)
pPath->newStroke=TRUE;
/* Increment entry count */
pPath->numEntriesUsed++;
return TRUE;
}
/* PATH_ReserveEntries
*
* Ensures that at least "numEntries" entries (for points and flags) have
* been allocated; allocates larger arrays and copies the existing entries
* to those arrays, if necessary. Returns TRUE if successful, else FALSE.
*/
BOOL
FASTCALL
PATH_ReserveEntries ( GdiPath *pPath, INT numEntries )
{
INT numEntriesToAllocate;
POINT *pPointsNew;
BYTE *pFlagsNew;
ASSERT(pPath!=NULL);
ASSERT(numEntries>=0);
/* Do we have to allocate more memory? */
if(numEntries > pPath->numEntriesAllocated)
{
/* Find number of entries to allocate. We let the size of the array
* grow exponentially, since that will guarantee linear time
* complexity. */
if(pPath->numEntriesAllocated)
{
numEntriesToAllocate=pPath->numEntriesAllocated;
while(numEntriesToAllocate<numEntries)
numEntriesToAllocate=numEntriesToAllocate*GROW_FACTOR_NUMER/GROW_FACTOR_DENOM;
} else
numEntriesToAllocate=numEntries;
/* Allocate new arrays */
pPointsNew=(POINT *)ExAllocatePoolWithTag(PagedPool, numEntriesToAllocate * sizeof(POINT), TAG_PATH);
if(!pPointsNew)
return FALSE;
pFlagsNew=(BYTE *)ExAllocatePoolWithTag(PagedPool, numEntriesToAllocate * sizeof(BYTE), TAG_PATH);
if(!pFlagsNew)
{
ExFreePool(pPointsNew);
return FALSE;
}
/* Copy old arrays to new arrays and discard old arrays */
if(pPath->pPoints)
{
ASSERT(pPath->pFlags);
memcpy(pPointsNew, pPath->pPoints, sizeof(POINT)*pPath->numEntriesUsed);
memcpy(pFlagsNew, pPath->pFlags, sizeof(BYTE)*pPath->numEntriesUsed);
ExFreePool(pPath->pPoints);
ExFreePool(pPath->pFlags);
}
pPath->pPoints=pPointsNew;
pPath->pFlags=pFlagsNew;
pPath->numEntriesAllocated=numEntriesToAllocate;
}
return TRUE;
}
/* PATH_DoArcPart
*
* Creates a Bezier spline that corresponds to part of an arc and appends the
* corresponding points to the path. The start and end angles are passed in
* "angleStart" and "angleEnd"; these angles should span a quarter circle
* at most. If "addMoveTo" is true, a PT_MOVETO entry for the first control
* point is added to the path; otherwise, it is assumed that the current
* position is equal to the first control point.
*/
BOOL
FASTCALL
PATH_DoArcPart ( GdiPath *pPath, FLOAT_POINT corners[],
double angleStart, double angleEnd, BOOL addMoveTo )
{
double halfAngle, a;
double xNorm[4], yNorm[4];
POINT point;
int i;
ASSERT(fabs(angleEnd-angleStart)<=M_PI_2);
/* FIXME: Is there an easier way of computing this? */
/* Compute control points */
halfAngle=(angleEnd-angleStart)/2.0;
if(fabs(halfAngle)>1e-8)
{
a=4.0/3.0*(1-cos(halfAngle))/sin(halfAngle);
xNorm[0]=cos(angleStart);
yNorm[0]=sin(angleStart);
xNorm[1]=xNorm[0] - a*yNorm[0];
yNorm[1]=yNorm[0] + a*xNorm[0];
xNorm[3]=cos(angleEnd);
yNorm[3]=sin(angleEnd);
xNorm[2]=xNorm[3] + a*yNorm[3];
yNorm[2]=yNorm[3] - a*xNorm[3];
} else
for(i=0; i<4; i++)
{
xNorm[i]=cos(angleStart);
yNorm[i]=sin(angleStart);
}
/* Add starting point to path if desired */
if(addMoveTo)
{
PATH_ScaleNormalizedPoint(corners, xNorm[0], yNorm[0], &point);
if(!PATH_AddEntry(pPath, &point, PT_MOVETO))
return FALSE;
}
/* Add remaining control points */
for(i=1; i<4; i++)
{
PATH_ScaleNormalizedPoint(corners, xNorm[i], yNorm[i], &point);
if(!PATH_AddEntry(pPath, &point, PT_BEZIERTO))
return FALSE;
}
return TRUE;
}
/* PATH_ScaleNormalizedPoint
*
* Scales a normalized point (x, y) with respect to the box whose corners are
* passed in "corners". The point is stored in "*pPoint". The normalized
* coordinates (-1.0, -1.0) correspond to corners[0], the coordinates
* (1.0, 1.0) correspond to corners[1].
*/
VOID
FASTCALL
PATH_ScaleNormalizedPoint ( FLOAT_POINT corners[], double x,
double y, POINT *pPoint )
{
ASSERT ( corners );
ASSERT ( pPoint );
pPoint->x=GDI_ROUND( (double)corners[0].x + (double)(corners[1].x-corners[0].x)*0.5*(x+1.0) );
pPoint->y=GDI_ROUND( (double)corners[0].y + (double)(corners[1].y-corners[0].y)*0.5*(y+1.0) );
}
/* PATH_NormalizePoint
*
* Normalizes a point with respect to the box whose corners are passed in
* corners. The normalized coordinates are stored in *pX and *pY.
*/
VOID
FASTCALL
PATH_NormalizePoint ( FLOAT_POINT corners[],
const FLOAT_POINT *pPoint,
double *pX, double *pY)
{
ASSERT ( corners );
ASSERT ( pPoint );
ASSERT ( pX );
ASSERT ( pY );
*pX=(double)(pPoint->x-corners[0].x)/(double)(corners[1].x-corners[0].x) * 2.0 - 1.0;
*pY=(double)(pPoint->y-corners[0].y)/(double)(corners[1].y-corners[0].y) * 2.0 - 1.0;
}
BOOL FASTCALL PATH_StrokePath(DC *dc, GdiPath *pPath)
{
BOOL ret = FALSE;
INT i=0;
INT nLinePts, nAlloc;
POINT *pLinePts = NULL;
POINT ptViewportOrg, ptWindowOrg;
SIZE szViewportExt, szWindowExt;
DWORD mapMode, graphicsMode;
XFORM xform;
DPRINT("Enter %s\n", __FUNCTION__);
if(pPath->state != PATH_Closed)
return FALSE;
/* Save the mapping mode info */
mapMode=dc->Dc_Attr.iMapMode;
IntGetViewportExtEx(dc, &szViewportExt);
IntGetViewportOrgEx(dc, &ptViewportOrg);
IntGetWindowExtEx(dc, &szWindowExt);
IntGetWindowOrgEx(dc, &ptWindowOrg);
xform = dc->w.xformWorld2Wnd;
/* Set MM_TEXT */
dc->Dc_Attr.iMapMode = MM_TEXT;
dc->Dc_Attr.ptlViewportOrg.x = 0;
dc->Dc_Attr.ptlViewportOrg.y = 0;
dc->Dc_Attr.ptlWindowOrg.x = 0;
dc->Dc_Attr.ptlWindowOrg.y = 0;
graphicsMode = dc->Dc_Attr.iGraphicsMode;
dc->Dc_Attr.iGraphicsMode = GM_ADVANCED;
IntGdiModifyWorldTransform(dc, &xform, MWT_IDENTITY);
dc->Dc_Attr.iGraphicsMode = graphicsMode;
/* Allocate enough memory for the worst case without beziers (one PT_MOVETO
* and the rest PT_LINETO with PT_CLOSEFIGURE at the end) plus some buffer
* space in case we get one to keep the number of reallocations small. */
nAlloc = pPath->numEntriesUsed + 1 + 300;
pLinePts = ExAllocatePoolWithTag(PagedPool, nAlloc * sizeof(POINT), TAG_PATH);
if(!pLinePts)
{
DPRINT1("Can't allocate pool!\n");
SetLastWin32Error(ERROR_NOT_ENOUGH_MEMORY);
goto end;
}
nLinePts = 0;
for(i = 0; i < pPath->numEntriesUsed; i++)
{
if((i == 0 || (pPath->pFlags[i-1] & PT_CLOSEFIGURE))
&& (pPath->pFlags[i] != PT_MOVETO))
{
DPRINT1("Expected PT_MOVETO %s, got path flag %d\n",
i == 0 ? "as first point" : "after PT_CLOSEFIGURE",
(INT)pPath->pFlags[i]);
goto end;
}
switch(pPath->pFlags[i])
{
case PT_MOVETO:
DPRINT("Got PT_MOVETO (%ld, %ld)\n",
pPath->pPoints[i].x, pPath->pPoints[i].y);
if(nLinePts >= 2) IntGdiPolyline(dc, pLinePts, nLinePts);
nLinePts = 0;
pLinePts[nLinePts++] = pPath->pPoints[i];
break;
case PT_LINETO:
case (PT_LINETO | PT_CLOSEFIGURE):
DPRINT("Got PT_LINETO (%ld, %ld)\n",
pPath->pPoints[i].x, pPath->pPoints[i].y);
pLinePts[nLinePts++] = pPath->pPoints[i];
break;
case PT_BEZIERTO:
DPRINT("Got PT_BEZIERTO\n");
if(pPath->pFlags[i+1] != PT_BEZIERTO ||
(pPath->pFlags[i+2] & ~PT_CLOSEFIGURE) != PT_BEZIERTO)
{
DPRINT1("Path didn't contain 3 successive PT_BEZIERTOs\n");
ret = FALSE;
goto end;
}
else
{
INT nBzrPts, nMinAlloc;
POINT *pBzrPts = GDI_Bezier(&pPath->pPoints[i-1], 4, &nBzrPts);
/* Make sure we have allocated enough memory for the lines of
* this bezier and the rest of the path, assuming we won't get
* another one (since we won't reallocate again then). */
nMinAlloc = nLinePts + (pPath->numEntriesUsed - i) + nBzrPts;
if(nAlloc < nMinAlloc)
{
// Reallocate memory
POINT *Realloc = NULL;
nAlloc = nMinAlloc * 2;
Realloc = ExAllocatePoolWithTag(PagedPool,
nAlloc * sizeof(POINT),
TAG_PATH);
if(!Realloc)
{
DPRINT1("Can't allocate pool!\n");
goto end;
}
memcpy(Realloc, pLinePts, nLinePts*sizeof(POINT));
ExFreePool(pLinePts);
pLinePts = Realloc;
}
memcpy(&pLinePts[nLinePts], &pBzrPts[1], (nBzrPts - 1) * sizeof(POINT));
nLinePts += nBzrPts - 1;
ExFreePool(pBzrPts);
i += 2;
}
break;
default:
DPRINT1("Got path flag %d (not supported)\n", (INT)pPath->pFlags[i]);
goto end;
}
if(pPath->pFlags[i] & PT_CLOSEFIGURE)
{
pLinePts[nLinePts++] = pLinePts[0];
}
}//for
if(nLinePts >= 2)
IntGdiPolyline(dc, pLinePts, nLinePts);
ret = TRUE;
end:
if(pLinePts)ExFreePool(pLinePts);
/* Restore the old mapping mode */
dc->Dc_Attr.iMapMode = mapMode;
dc->Dc_Attr.szlWindowExt.cx = szWindowExt.cx;
dc->Dc_Attr.szlWindowExt.cy = szWindowExt.cy;
dc->Dc_Attr.ptlWindowOrg.x = ptWindowOrg.x;
dc->Dc_Attr.ptlWindowOrg.y = ptWindowOrg.y;
dc->Dc_Attr.szlViewportExt.cx = szViewportExt.cx;
dc->Dc_Attr.szlViewportExt.cy = szViewportExt.cy;
dc->Dc_Attr.ptlViewportOrg.x = ptViewportOrg.x;
dc->Dc_Attr.ptlViewportOrg.y = ptViewportOrg.y;
/* Restore the world transform */
dc->w.xformWorld2Wnd = xform;
/* If we've moved the current point then get its new position
which will be in device (MM_TEXT) co-ords, convert it to
logical co-ords and re-set it. This basically updates
dc->CurPosX|Y so that their values are in the correct mapping
mode.
*/
if(i > 0)
{
POINT pt;
IntGetCurrentPositionEx(dc, &pt);
IntDPtoLP(dc, &pt, 1);
IntGdiMoveToEx(dc, pt.x, pt.y, NULL);
}
DPRINT("Leave %s, ret=%d\n", __FUNCTION__, ret);
return ret;
}
/* EOF */
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -