⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cooktorrance.cpp

📁 shrike is a utility application that acts as a testbed for shaders written in Sh
💻 CPP
字号:
// Sh: A GPU metaprogramming language.//// Copyright 2003-2005 Serious Hack Inc.// // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.//// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU// Lesser General Public License for more details.//// You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, // MA  02110-1301, USA//////////////////////////////////////////////////////////////////////////////#include <sh/sh.hpp>#include <sh/shutil.hpp>#include <iostream>#include <cmath>#include "Shader.hpp"#include "Globals.hpp"using namespace SH;using namespace ShUtil;#include "util.hpp"class CookTorranceBeckmann : public Shader {public:  CookTorranceBeckmann();  ~CookTorranceBeckmann();  bool init();  ShProgram vertex() { return vsh;}  ShProgram fragment() { return fsh;}  ShProgram vsh, fsh;  static CookTorranceBeckmann instance;};CookTorranceBeckmann::CookTorranceBeckmann()  : Shader("Basic Lighting Models: Cook-Torrance: Beckmann's model"){}CookTorranceBeckmann::~CookTorranceBeckmann(){}bool CookTorranceBeckmann::init(){  vsh = SH_BEGIN_PROGRAM("gpu:vertex") {    ShInputPosition4f ipos;    ShInputNormal3f inorm;        ShOutputPosition4f opos; // Position in NDC    ShOutputNormal3f onorm;    ShInOutTexCoord2f tc; // pass through tex coords    ShOutputVector3f lightv; // direction to light    ShOutputVector3f eyev; // direction to the eye    ShOutputVector3f halfv; // half vector    opos = Globals::mvp | ipos; // Compute NDC position    onorm = Globals::mv | inorm; // Compute view-space normal    ShPoint3f posv = (Globals::mv | ipos)(0,1,2); // Compute view-space position    lightv = normalize(Globals::lightPos - posv); // Compute light direction    //lightv = (mToTangent | lightv);    ShPoint3f viewv = -normalize(posv); // view vector    eyev = normalize(viewv - posv);    //eyev = (mToTangent | viewv); // Compute eye direction    halfv = normalize(viewv + lightv); // Compute half vector      } SH_END;    ShColor3f SH_DECL(color) = ShColor3f(0.2, 0.5, 0.9);  ShAttrib1f SH_DECL(roughness) = ShAttrib1f(0.15);  roughness.range(0.1f, 1.0f);  ShAttrib1f SH_DECL(eta) = ShAttrib1f(1.2);  eta.range(1.0f, 5.0f); // the relative index of refraction     fsh = SH_BEGIN_PROGRAM("gpu:fragment") {    ShInputNormal3f normal;    ShInputTexCoord2f tc; // ignore texcoords    ShInputVector3f light;    ShInputVector3f eye;    ShInputVector3f half;    ShInputPosition4f posh;    ShOutputColor3f result;        normal = normalize(normal);    light = normalize(light);    eye = normalize(eye);    half = normalize(half);    // Beckman's distribution function    ShAttrib1f D = beckmann(normal, half, roughness);    // Fresnel term    ShAttrib1f F = fresnel(eye,normal,eta);    // self shadowing term    ShAttrib1f normalDotEye = pos(normal | eye);    ShAttrib1f normalDotLight = pos(normal | light);    ShAttrib1f X = 2.0 * pos(normal | half) / pos(eye | half);    ShAttrib1f G = sat(SH::min(X * normalDotLight, X * normalDotEye));    ShAttrib1f CT = (D*F*G) / (normalDotLight * normalDotEye * M_PI); // Compute Cook-Torrance lighting        ShAttrib3f specular = color * max(0.0, CT);    ShAttrib3f diffuse = color * max(0.0, normalDotLight/M_PI);		result = diffuse + specular;      } SH_END;  return true;}CookTorranceBeckmann CookTorranceBeckmann::instance = CookTorranceBeckmann();class CookTorranceBlinn : public Shader {public:  CookTorranceBlinn();  ~CookTorranceBlinn();  bool init();  ShProgram vertex() { return vsh;}  ShProgram fragment() { return fsh;}  ShProgram vsh, fsh;  static CookTorranceBlinn instance;};CookTorranceBlinn::CookTorranceBlinn()  : Shader("Basic Lighting Models: Cook-Torrance: Blinn's model"){}CookTorranceBlinn::~CookTorranceBlinn(){}bool CookTorranceBlinn::init(){  vsh = SH_BEGIN_PROGRAM("gpu:vertex") {    ShInputPosition4f ipos;    ShInputNormal3f inorm;        ShOutputPosition4f opos; // Position in NDC    ShOutputNormal3f onorm;    ShInOutTexCoord2f tc; // pass through tex coords    ShOutputVector3f lightv; // direction to light    ShOutputVector3f eyev; // direction to the eye    ShOutputVector3f halfv; // half vector    opos = Globals::mvp | ipos; // Compute NDC position    onorm = Globals::mv | inorm; // Compute view-space normal    ShPoint3f posv = (Globals::mv | ipos)(0,1,2); // Compute view-space position    lightv = normalize(Globals::lightPos - posv); // Compute light direction    ShPoint3f viewv = -normalize(posv); // view vector    eyev = normalize(viewv - posv);    halfv = normalize(viewv + lightv); // Compute half vector      } SH_END;    ShColor3f SH_DECL(color) = ShColor3f(0.2, 0.5, 0.9);  ShAttrib1f SH_DECL(roughness) = ShAttrib1f(0.15);  roughness.range(0.1f, 1.0f);  ShAttrib1f SH_DECL(eta) = ShAttrib1f(1.2);  eta.range(1.0f, 5.0f); // the relative index of refraction  ShAttrib1f constant = ShAttrib1f(10.0); // the arbitrary constant c  constant.name("normalization constant");  constant.range(0.0f, 50.0f);     fsh = SH_BEGIN_PROGRAM("gpu:fragment") {    ShInputNormal3f normal;    ShInputTexCoord2f tc; // ignore texcoords    ShInputVector3f light;    ShInputVector3f eye;    ShInputVector3f half;    ShInputPosition4f posh;    ShOutputColor3f result;        normal = normalize(normal);    light = normalize(light);    eye = normalize(eye);    half = normalize(half);    // Blinn distribution    ShAttrib1f normalDotHalf = (normal | half);    ShAttrib1f normalDotHalf2 = normalDotHalf * normalDotHalf;    ShAttrib1f roughness2 = roughness * roughness; // roughness fixed at 0.15    ShAttrib1f exponent = (normalDotHalf2 - 1) / roughness2; // Compute the exponent value    ShAttrib1f D = constant * pow(M_E, exponent); // Compute the distribution function    // Fresnel term    ShAttrib1f F = fresnel(eye,normal,eta);    // self shadowing term    ShAttrib1f normalDotEye = pos(normal | eye);    ShAttrib1f normalDotLight = pos(normal | light);    ShAttrib1f X = 2.0 * normalDotHalf / pos(eye | half);    ShAttrib1f G = sat(SH::min(X * normalDotLight, X * normalDotEye));    ShAttrib1f CT = (D*F*G) / (normalDotLight * normalDotEye * M_PI); // Compute Cook-Torrance lighting        ShAttrib3f specular = color * max(0.0, CT);    ShAttrib3f diffuse = color * max(0.0, normalDotLight/M_PI);    result = diffuse + specular;      } SH_END;  return true;}CookTorranceBlinn CookTorranceBlinn::instance = CookTorranceBlinn();

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -