📄 presentation.m
字号:
% PART 1
function fft015(M,BOE,p,w,z)
M=4;BOE=150; % width
p=260; % number of iterative times
w=0.6328e-3; % wavelength
z=1e3; % distance between A and B
N=BOE/(w*z);
X=[-M/2:1/N:M/2];
m=length(X);
A=zeros(1,m);
Z1=exp(-0.09*(X.^2)); % Gaussian distribution
A=Z1;
u=([-N/2:1/M:N/2]);
xf=u.*(w*z);
wc=90;
n=7; % required butterworth (rectangular) distribution
B=sqrt(1./(1+((u.^2).^7.*(wc^(-14)))));
% PART 2 Implement FFT
FB=ifft(B);
FB0=FB; % initial value
FBi=angle(FB0);
FBi0=exp(i*FBi);
FBB=FBi0;
for k=1:p
AA=A.*FBB; % Gaussian distribution instead of amplitude one
FA=fft(AA);
FAm=abs(FA);
FAi1=angle(FA);
FAi=exp(i*FAi1);
BB=B.*FAi; % rectangular distribution instead of amplitude one
FB=ifft(BB);
FBi1=angle(FB);
FBi=exp(i*FBi1);
FBB=FBi;
end
% PART 3 Show the Result
Ba=FAi1;
C0=pi/(w*z)*(xf.^2); % adaxial spherical wave factor
Aa=-C0+FBi1; % phase for "H"
Da=mod(Aa,2*pi); % phase that is less than 2*pi
Da=round(Da/(pi/4)); % binary phase, n=3
% PART 4 Related Figures
XX=([0:5/N:M]);
YY=XX;
NX=length(XX);
AAa=zeros(m,m); % extend to 3-dimension
for k=1:m
AAa(k,:)=A(k);
end
XF=([0:5/M:N]);
YF=XF;
NXF=length(XF);
FAm=FAm.^2/max(FAm.^2); % amplitude normalization
FFAm=zeros(m,m);
for k=1:m
FFAm(k,:)=FAm(k);
end
FFAm=FFAm(:,:);
FFAm=FFAm(1:5:m,1:5:m);
AAa=AAa(1:5:m,1:5:m);
figure(1)
mesh(XX,YY,AAa) % original optical field
title('Amplitude distribution before transforming')
xlabel('position x/mm')
ylabel('position y/mm')
zlabel('Intensity I/r. u')
grid on;
figure(2)
mesh(XF,YF,FFAm) % modulated output optical field
title('Amplitude distribution after transforming')
xlabel('position x/mm')
ylabel('position y/mm')
zlabel('Intensity I/r. u')
grid on;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -