📄 mtxlib.cpp
字号:
x = xIn; y = yIn; z = zIn; w = wIn;}// Get length of a vector4float vector4::length() const { return (float) sqrt(x*x + y*y + z*z + w*w);}// Get squared length of a vector4float vector4::lengthSqr() const { return (x*x + y*y + z*z + w*w);}// Does vector4 equal (0, 0, 0, 0)?bool vector4::isZero() const { return ((x == 0.0F) && (y == 0.0F) && (z == 0.0F) && (w == 0.0F));}// Normalize a vector4vector4 &vector4::normalize() { float m = length(); if (m > 0.0F) m = 1.0F / m; else m = 0.0F; x *= m; y *= m; z *= m; w *= m; return *this;}////////////////////////////////////////////////////////////// Miscellaneous vector functions//// Return Normal of vector2'svector2 Normalized(const vector2 &a){ vector2 ret(a); return ret.normalize();}// Return Normal of vector3'svector3 Normalized(const vector3 &a){ vector3 ret(a); return ret.normalize();}// Return Normal of vector4'svector4 Normalized(const vector4 &a){ vector4 ret(a); return ret.normalize();}// Dot product of two vector2'sfloat DotProduct(const vector2 &a, const vector2 &b) { return a.x*b.x + a.y*b.y;}// Dot product of two vector3'sfloat DotProduct(const vector3 &a, const vector3 &b) { return a.x*b.x + a.y*b.y + a.z*b.z;}// Dot product of two vector4'sfloat DotProduct(const vector4 &a, const vector4 &b) { return a.x*b.x + a.y*b.y + a.z*b.z + a.w*b.w;}// Swap two vector2'svoid SwapVec(vector2 &a, vector2 &b) { vector2 tmp(a); a = b; b = tmp;}// Swap two vector3'svoid SwapVec(vector3 &a, vector3 &b) { vector3 tmp(a); a = b; b = tmp;}// Swap two vector4'svoid SwapVec(vector4 &a, vector4 &b) { vector4 tmp(a); a = b; b = tmp;}// Cross product of two vector3'svector3 CrossProduct(const vector3 &a, const vector3 &b) { return vector3(a.y*b.z - a.z*b.y, a.z*b.x - a.x*b.z, a.x*b.y - a.y*b.x);}// Are these two vector2's nearly equal?bool NearlyEquals( const vector2& a, const vector2& b, float r ) { vector2 diff = a - b; // difference return (DotProduct(diff, diff) < r*r); // radius}// Are these two vector3's nearly equal?bool NearlyEquals( const vector3& a, const vector3& b, float r ) { vector3 diff = a - b; // difference return (DotProduct(diff, diff) < r*r); // radius}// Are these two vector4's nearly equal?bool NearlyEquals( const vector4& a, const vector4& b, float r ) { vector4 diff = a - b; // difference return (DotProduct(diff, diff) < r*r); // radius}////////////////////////////////////////////////////////////// matrix33 class//// Constructor with initializing valuematrix33::matrix33(float v) { col[0].set(v, v, v); col[1].set(v, v, v); col[2].set(v, v, v);}// Constructor with initializing matrix33matrix33::matrix33(const matrix33 &m) { col[0] = m[0]; col[1] = m[1]; col[2] = m[2];}// Constructor with initializing vector3'smatrix33::matrix33(const vector3 &v0, const vector3 &v1, const vector3 &v2) { col[0] = v0; col[1] = v1; col[2] = v2;}// Array indexingvector3 &matrix33::operator [] (unsigned int i) { assert (i<3); return (vector3&)col[i];}// Array indexingconst vector3 &matrix33::operator [] (unsigned int i) const { assert (i<3); return (vector3&)col[i];}// Assignmatrix33 &matrix33::operator = (const matrix33 &m) { col[0] = m[0]; col[1] = m[1]; col[2] = m[2]; return *this;}// Add a matrix33 to this onematrix33 &matrix33::operator += (const matrix33 &m) { col[0] += m[0]; col[1] += m[1]; col[2] += m[2]; return *this;}// Subtract a matrix33 from this onematrix33 &matrix33::operator -= (const matrix33 &m) { col[0] -= m[0]; col[1] -= m[1]; col[2] -= m[2]; return *this;}// Multiply the matrix33 by another matrix33matrix33 &matrix33::operator *= (const matrix33 &m) { matrix33 t; for (unsigned int r = 0; r < 3; r++) { for (unsigned int c = 0; c < 3; c++) { float f = 0; f += col[0][r] * m[c][0]; f += col[1][r] * m[c][1]; f += col[2][r] * m[c][2]; t[c][r] = f; } } *this = t; return *this;}// Multiply the matrix33 by a floatmatrix33 &matrix33::operator *= (float f) { col[0] *= f; col[1] *= f; col[2] *= f; return *this;}// Are these two matrix33's equal?bool operator == (const matrix33 &a, const matrix33 &b) { return ((a[0] == b[0]) && (a[1] == b[1]) && (a[2] == b[2]));}// Are these two matrix33's not equal?bool operator != (const matrix33 &a, const matrix33 &b) { return ((a[0] != b[0]) || (a[1] != b[1]) || (a[2] != b[2]));}// Add two matrix33'smatrix33 operator + (const matrix33 &a, const matrix33 &b) { matrix33 ret(a); ret += b; return ret;}// Subtract one matrix33 from anothermatrix33 operator - (const matrix33 &a, const matrix33 &b) { matrix33 ret(a); ret -= b; return ret;}// Multiply matrix33 by another matrix33matrix33 operator * (const matrix33 &a, const matrix33 &b) { matrix33 ret(a); ret *= b; return ret;}// Multiply a vector3 by this matrix33vector3 operator * (const matrix33 &m, const vector3 &v) { vector3 ret; ret.x = v.x * m[0][0] + v.y * m[1][0] + v.z * m[2][0]; ret.y = v.x * m[0][1] + v.y * m[1][1] + v.z * m[2][1]; ret.z = v.x * m[0][2] + v.y * m[1][2] + v.z * m[2][2]; return ret;}// Multiply a vector3 by this matrix33vector3 operator * (const vector3 &v, const matrix33 &m) { vector3 ret; ret.x = DotProduct(m[0], v); ret.y = DotProduct(m[1], v); ret.z = DotProduct(m[2], v); return ret;}// Multiply matrix33 by a floatmatrix33 operator * (float f, const matrix33 &m) { matrix33 ret(m); ret *= f; return ret;}// Multiply matrix33 by a floatmatrix33 operator * (const matrix33 &m, float f) { matrix33 ret(m); ret *= f; return ret;}// Set matrix33 to the identity matrixmatrix33 &matrix33::identity() { for (unsigned int c = 0; c < 3; c++) { for (unsigned int r = 0; r < 3; r++) { if (c == r) col[c][r] = 1.0F; else col[c][r] = 0.0F; } } return *this;}// Transpose the matrix33matrix33 &matrix33::transpose() { float t; for (unsigned int c = 0; c < 3; c++) { for (unsigned int r = c + 1; r < 3; r++) { t = col[c][r]; col[c][r] = col[r][c]; col[r][c] = t; } } return *this;}// Invert the matrix33matrix33 &matrix33::invert() { matrix33 a(*this); matrix33 b(IdentityMatrix33()); unsigned int c, r; unsigned int cc; unsigned int rowMax; // Points to max abs value row in this column unsigned int row; float tmp; // Go through columns for (c=0; c<3; c++) { // Find the row with max value in this column rowMax = c; for (r=c+1; r<3; r++) { if (fabs(a[c][r]) > fabs(a[c][rowMax])) { rowMax = r; } } // If the max value here is 0, we can't invert. Return identity. if (a[rowMax][c] == 0.0F) return (identity()); // Swap row "rowMax" with row "c" for (cc=0; cc<3; cc++) { tmp = a[cc][c]; a[cc][c] = a[cc][rowMax]; a[cc][rowMax] = tmp; tmp = b[cc][c]; b[cc][c] = b[cc][rowMax]; b[cc][rowMax] = tmp; } // Now everything we do is on row "c". // Set the max cell to 1 by dividing the entire row by that value tmp = a[c][c]; for (cc=0; cc<3; cc++) { a[cc][c] /= tmp; b[cc][c] /= tmp; } // Now do the other rows, so that this column only has a 1 and 0's for (row = 0; row < 3; row++) { if (row != c) { tmp = a[c][row]; for (cc=0; cc<3; cc++) { a[cc][row] -= a[cc][c] * tmp; b[cc][row] -= b[cc][c] * tmp; } } } } *this = b; return *this;}// Return a matrix33 set to the identity matrixmatrix33 IdentityMatrix33() { matrix33 ret; return ret.identity();}// Return the transpose of the matrix33matrix33 TransposeMatrix33(const matrix33 &m) { matrix33 ret(m); return ret.transpose();}// Return the inverted matrix33matrix33 InvertMatrix33(const matrix33 &m) { matrix33 ret(m); return ret.invert();}// Return a 2D rotation matrix33matrix33 RotateRadMatrix33(float rad) { matrix33 ret; float sinA, cosA; sinA = (float)sin(rad); cosA = (float)cos(rad); ret[0][0] = cosA; ret[1][0] = -sinA; ret[2][0] = 0.0F; ret[0][1] = sinA; ret[1][1] = cosA; ret[2][1] = 0.0F; ret[0][2] = 0.0F; ret[1][2] = 0.0F; ret[2][2] = 1.0F; return ret;}// Return a 2D translation matrix33matrix33 TranslateMatrix33(float x, float y) { matrix33 ret; ret.identity(); ret[2][0] = x; ret[2][1] = y; return ret;}// Return a 2D/3D scale matrix33matrix33 ScaleMatrix33(float x, float y, float z) { matrix33 ret; ret.identity(); ret[0][0] = x; ret[1][1] = y; ret[2][2] = z; return ret;}////////////////////////////////////////////////////////////// matrix44 class//// Constructor with initializing valuematrix44::matrix44(float v) { col[0].set(v, v, v, v); col[1].set(v, v, v, v); col[2].set(v, v, v, v); col[3].set(v, v, v, v);}// Constructor with initializing matrix44matrix44::matrix44(const matrix44 &m) { col[0] = m[0]; col[1] = m[1]; col[2] = m[2]; col[3] = m[3];}// Constructor with initializing matrix33matrix44::matrix44(const matrix33 &m) { col[0] = m[0]; col[1] = m[1]; col[2] = m[2]; col[3] = vector4(0.0, 0.0, 0.0, 1.0);}// Constructor with initializing vector4'smatrix44::matrix44(const vector4 &v0, const vector4 &v1, const vector4 &v2, const vector4 &v3) { col[0] = v0; col[1] = v1; col[2] = v2; col[3] = v3;}// Array indexingvector4 &matrix44::operator [] (unsigned int i) { assert (i<4); return (vector4&) col[i];}// Array indexingconst vector4 &matrix44::operator [] (unsigned int i) const { assert (i<4); return (vector4&) col[i];}// Assignmatrix44 &matrix44::operator = (const matrix44 &m) { col[0] = m[0]; col[1] = m[1]; col[2] = m[2]; col[3] = m[3]; return *this;}// Assign a matrix33 to the matrix44matrix44 &matrix44::operator = (const matrix33 &m) { col[0] = m[0]; col[1] = m[1]; col[2] = m[2]; col[3] = vector4(0.0, 0.0, 0.0, 1.0); return *this;}// Add a matrix44 to this onematrix44 &matrix44::operator += (const matrix44 &m) { col[0] += m[0]; col[1] += m[1]; col[2] += m[2]; col[3] += m[3]; return *this;}// Subtract a matrix44 from this onematrix44 &matrix44::operator -= (const matrix44 &m) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -