⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 docecc.c

📁 linux下的MTD设备驱动源代码,配合jffs2 yaffss2文件系统.
💻 C
📖 第 1 页 / 共 2 页
字号:
	}      if (q != 0)	continue;      /* store root and error location number indices */      root[count] = i;      loc[count] = k;      count++;    }    if (count != no_eras) {      printf("\n lambda(x) is WRONG\n");      count = -1;      goto finish;    }#if DEBUG >= 2    printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");    for (i = 0; i < count; i++)      printf("%d ", loc[i]);    printf("\n");#endif#endif  }  for(i=0;i<NN-KK+1;i++)    b[i] = Index_of[lambda[i]];    /*   * Begin Berlekamp-Massey algorithm to determine error+erasure   * locator polynomial   */  r = no_eras;  el = no_eras;  while (++r <= NN-KK) {	/* r is the step number */    /* Compute discrepancy at the r-th step in poly-form */    discr_r = 0;    for (i = 0; i < r; i++){      if ((lambda[i] != 0) && (s[r - i] != A0)) {	discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])];      }    }    discr_r = Index_of[discr_r];	/* Index form */    if (discr_r == A0) {      /* 2 lines below: B(x) <-- x*B(x) */      COPYDOWN(&b[1],b,NN-KK);      b[0] = A0;    } else {      /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */      t[0] = lambda[0];      for (i = 0 ; i < NN-KK; i++) {	if(b[i] != A0)	  t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])];	else	  t[i+1] = lambda[i+1];      }      if (2 * el <= r + no_eras - 1) {	el = r + no_eras - el;	/*	 * 2 lines below: B(x) <-- inv(discr_r) *	 * lambda(x)	 */	for (i = 0; i <= NN-KK; i++)	  b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN);      } else {	/* 2 lines below: B(x) <-- x*B(x) */	COPYDOWN(&b[1],b,NN-KK);	b[0] = A0;      }      COPY(lambda,t,NN-KK+1);    }  }  /* Convert lambda to index form and compute deg(lambda(x)) */  deg_lambda = 0;  for(i=0;i<NN-KK+1;i++){    lambda[i] = Index_of[lambda[i]];    if(lambda[i] != A0)      deg_lambda = i;  }  /*   * Find roots of the error+erasure locator polynomial by Chien   * Search   */  COPY(&reg[1],&lambda[1],NN-KK);  count = 0;		/* Number of roots of lambda(x) */  for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) {    q = 1;    for (j = deg_lambda; j > 0; j--){      if (reg[j] != A0) {	reg[j] = modnn(reg[j] + j);	q ^= Alpha_to[reg[j]];      }    }    if (q != 0)      continue;    /* store root (index-form) and error location number */    root[count] = i;    loc[count] = k;    /* If we've already found max possible roots,     * abort the search to save time     */    if(++count == deg_lambda)      break;  }  if (deg_lambda != count) {    /*     * deg(lambda) unequal to number of roots => uncorrectable     * error detected     */    count = -1;    goto finish;  }  /*   * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo   * x**(NN-KK)). in index form. Also find deg(omega).   */  deg_omega = 0;  for (i = 0; i < NN-KK;i++){    tmp = 0;    j = (deg_lambda < i) ? deg_lambda : i;    for(;j >= 0; j--){      if ((s[i + 1 - j] != A0) && (lambda[j] != A0))	tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])];    }    if(tmp != 0)      deg_omega = i;    omega[i] = Index_of[tmp];  }  omega[NN-KK] = A0;    /*   * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =   * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form   */  for (j = count-1; j >=0; j--) {    num1 = 0;    for (i = deg_omega; i >= 0; i--) {      if (omega[i] != A0)	num1  ^= Alpha_to[modnn(omega[i] + i * root[j])];    }    num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)];    den = 0;        /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */    for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) {      if(lambda[i+1] != A0)	den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])];    }    if (den == 0) {#if DEBUG >= 1      printf("\n ERROR: denominator = 0\n");#endif      /* Convert to dual- basis */      count = -1;      goto finish;    }    /* Apply error to data */    if (num1 != 0) {        eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])];    } else {        eras_val[j] = 0;    }  } finish:  for(i=0;i<count;i++)      eras_pos[i] = loc[i];  return count;}/***************************************************************************//* The DOC specific code begins here */#define SECTOR_SIZE 512/* The sector bytes are packed into NB_DATA MM bits words */#define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM)/*  * Correct the errors in 'sector[]' by using 'ecc1[]' which is the * content of the feedback shift register applyied to the sector and * the ECC. Return the number of errors corrected (and correct them in * sector), or -1 if error  */int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6]){    int parity, i, nb_errors;    gf bb[NN - KK + 1];    gf error_val[NN-KK];    int error_pos[NN-KK], pos, bitpos, index, val;    dtype *Alpha_to, *Index_of;    /* init log and exp tables here to save memory. However, it is slower */    Alpha_to = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);    if (!Alpha_to)        return -1;        Index_of = kmalloc((NN + 1) * sizeof(dtype), GFP_KERNEL);    if (!Index_of) {        kfree(Alpha_to);        return -1;    }    generate_gf(Alpha_to, Index_of);    parity = ecc1[1];    bb[0] =  (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8);    bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6);    bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4);    bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2);    nb_errors = eras_dec_rs(Alpha_to, Index_of, bb,                             error_val, error_pos, 0);    if (nb_errors <= 0)        goto the_end;    /* correct the errors */    for(i=0;i<nb_errors;i++) {        pos = error_pos[i];        if (pos >= NB_DATA && pos < KK) {            nb_errors = -1;            goto the_end;        }        if (pos < NB_DATA) {            /* extract bit position (MSB first) */            pos = 10 * (NB_DATA - 1 - pos) - 6;            /* now correct the following 10 bits. At most two bytes               can be modified since pos is even */            index = (pos >> 3) ^ 1;            bitpos = pos & 7;            if ((index >= 0 && index < SECTOR_SIZE) ||                 index == (SECTOR_SIZE + 1)) {                val = error_val[i] >> (2 + bitpos);                parity ^= val;                if (index < SECTOR_SIZE)                    sector[index] ^= val;            }            index = ((pos >> 3) + 1) ^ 1;            bitpos = (bitpos + 10) & 7;            if (bitpos == 0)                bitpos = 8;            if ((index >= 0 && index < SECTOR_SIZE) ||                 index == (SECTOR_SIZE + 1)) {                val = error_val[i] << (8 - bitpos);                parity ^= val;                if (index < SECTOR_SIZE)                    sector[index] ^= val;            }        }    }        /* use parity to test extra errors */    if ((parity & 0xff) != 0)        nb_errors = -1; the_end:    kfree(Alpha_to);    kfree(Index_of);    return nb_errors;}EXPORT_SYMBOL_GPL(doc_decode_ecc);MODULE_LICENSE("GPL");MODULE_AUTHOR("Fabrice Bellard <fabrice.bellard@netgem.com>");MODULE_DESCRIPTION("ECC code for correcting errors detected by DiskOnChip 2000 and Millennium ECC hardware");

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -