⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cfi_cmdset_0002.c

📁 linux下的MTD设备驱动源代码,配合jffs2 yaffss2文件系统.
💻 C
📖 第 1 页 / 共 4 页
字号:
		if (!(mode == FL_READY || mode == FL_POINT		      || (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))		      || (mode == FL_WRITING && (cfip->EraseSuspend & 0x1))))			goto sleep;		/* We could check to see if we're trying to access the sector		 * that is currently being erased. However, no user will try		 * anything like that so we just wait for the timeout. */		/* Erase suspend */		/* It's harmless to issue the Erase-Suspend and Erase-Resume		 * commands when the erase algorithm isn't in progress. */		cfi_write(map, CMD(0xB0), chip->in_progress_block_addr);		chip->oldstate = FL_ERASING;		chip->state = FL_ERASE_SUSPENDING;		chip->erase_suspended = 1;		for (;;) {			if (chip_ready(map, adr))				break;			if (time_after(jiffies, timeo)) {				/* Should have suspended the erase by now.				 * Send an Erase-Resume command as either				 * there was an error (so leave the erase				 * routine to recover from it) or we trying to				 * use the erase-in-progress sector. */				cfi_write(map, CMD(0x30), chip->in_progress_block_addr);				chip->state = FL_ERASING;				chip->oldstate = FL_READY;				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);				return -EIO;			}						cfi_spin_unlock(chip->mutex);			cfi_udelay(1);			cfi_spin_lock(chip->mutex);			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.			   So we can just loop here. */		}		chip->state = FL_READY;		return 0;	case FL_POINT:		/* Only if there's no operation suspended... */		if (mode == FL_READY && chip->oldstate == FL_READY)			return 0;	default:	sleep:		set_current_state(TASK_UNINTERRUPTIBLE);		add_wait_queue(&chip->wq, &wait);		cfi_spin_unlock(chip->mutex);		schedule();		remove_wait_queue(&chip->wq, &wait);		cfi_spin_lock(chip->mutex);		goto resettime;	}}static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr){	struct cfi_private *cfi = map->fldrv_priv;	switch(chip->oldstate) {	case FL_ERASING:		chip->state = chip->oldstate;		cfi_write(map, CMD(0x30), chip->in_progress_block_addr);		chip->oldstate = FL_READY;		chip->state = FL_ERASING;		break;	case FL_READY:	case FL_STATUS:		/* We should really make set_vpp() count, rather than doing this */		DISABLE_VPP(map);		break;	default:		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);	}	wake_up(&chip->wq);}static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf){	unsigned long cmd_addr;	struct cfi_private *cfi = map->fldrv_priv;	int ret;	adr += chip->start;	/* Ensure cmd read/writes are aligned. */ 	cmd_addr = adr & ~(CFIDEV_BUSWIDTH-1); 	cfi_spin_lock(chip->mutex);	ret = get_chip(map, chip, cmd_addr, FL_READY);	if (ret) {		cfi_spin_unlock(chip->mutex);		return ret;	}	if (chip->state != FL_POINT && chip->state != FL_READY) {		cfi_write(map, CMD(0xf0), cmd_addr);		chip->state = FL_READY;	}	map_copy_from(map, buf, adr, len);	put_chip(map, chip, cmd_addr);	cfi_spin_unlock(chip->mutex);	return 0;}static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf){	struct map_info *map = mtd->priv;	struct cfi_private *cfi = map->fldrv_priv;	unsigned long ofs;	int chipnum;	int ret = 0;	/* ofs: offset within the first chip that the first read should start */	chipnum = (from >> cfi->chipshift);	ofs = from - (chipnum <<  cfi->chipshift);	*retlen = 0;	while (len) {		unsigned long thislen;		if (chipnum >= cfi->numchips)			break;		if ((len + ofs -1) >> cfi->chipshift)			thislen = (1<<cfi->chipshift) - ofs;		else			thislen = len;		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);		if (ret)			break;		*retlen += thislen;		len -= thislen;		buf += thislen;		ofs = 0;		chipnum++;	}	return ret;}static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf){	DECLARE_WAITQUEUE(wait, current);	unsigned long timeo = jiffies + HZ;	struct cfi_private *cfi = map->fldrv_priv; retry:	cfi_spin_lock(chip->mutex);	if (chip->state != FL_READY){#if 0		printk(KERN_DEBUG "Waiting for chip to read, status = %d\n", chip->state);#endif		set_current_state(TASK_UNINTERRUPTIBLE);		add_wait_queue(&chip->wq, &wait);				cfi_spin_unlock(chip->mutex);		schedule();		remove_wait_queue(&chip->wq, &wait);#if 0		if(signal_pending(current))			return -EINTR;#endif		timeo = jiffies + HZ;		goto retry;	}		adr += chip->start;	chip->state = FL_READY;	/* should these be CFI_DEVICETYPE_X8 instead of cfi->device_type? */	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);		map_copy_from(map, buf, adr, len);	/* should these be CFI_DEVICETYPE_X8 instead of cfi->device_type? */	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);		wake_up(&chip->wq);	cfi_spin_unlock(chip->mutex);	return 0;}static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf){	struct map_info *map = mtd->priv;	struct cfi_private *cfi = map->fldrv_priv;	unsigned long ofs;	int chipnum;	int ret = 0;	/* ofs: offset within the first chip that the first read should start */	/* 8 secsi bytes per chip */	chipnum=from>>3;	ofs=from & 7;	*retlen = 0;	while (len) {		unsigned long thislen;		if (chipnum >= cfi->numchips)			break;		if ((len + ofs -1) >> 3)			thislen = (1<<3) - ofs;		else			thislen = len;		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);		if (ret)			break;		*retlen += thislen;		len -= thislen;		buf += thislen;		ofs = 0;		chipnum++;	}	return ret;}static int do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, cfi_word datum){	struct cfi_private *cfi = map->fldrv_priv;	unsigned long timeo = jiffies + HZ;	/*	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices	 * have a max write time of a few hundreds usec). However, we should	 * use the maximum timeout value given by the chip at probe time	 * instead.  Unfortunately, struct flchip does have a field for	 * maximum timeout, only for typical which can be far too short	 * depending of the conditions.	 The ' + 1' is to avoid having a	 * timeout of 0 jiffies if HZ is smaller than 1000.	 */	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;	int ret = 0;	adr += chip->start;	cfi_spin_lock(chip->mutex);	ret = get_chip(map, chip, adr, FL_WRITING);	if (ret) {		cfi_spin_unlock(chip->mutex);		return ret;	}	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8x)\n",	       __func__, adr, datum );	/*	 * Check for a NOP for the case when the datum to write is already	 * present - it saves time and works around buggy chips that corrupt	 * data at other locations when 0xff is written to a location that	 * already contains 0xff.	 */	if (cfi_read(map, adr) == datum) {		DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",		       __func__);		goto op_done;	}	ENABLE_VPP(map);	/*	 * The CFI_DEVICETYPE_X8 argument is needed even when	 * cfi->device_type != CFI_DEVICETYPE_X8.  The addresses for	 * command sequences don't scale even when the device is	 * wider.  This is the case for many of the cfi_send_gen_cmd()	 * below.  I'm not sure, however, why some use	 * cfi->device_type.	 */	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL);	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL);	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, CFI_DEVICETYPE_X8, NULL);	cfi_write(map, datum, adr);	chip->state = FL_WRITING;	cfi_spin_unlock(chip->mutex);	cfi_udelay(chip->word_write_time);	cfi_spin_lock(chip->mutex);	/* See comment above for timeout value. */	timeo = jiffies + uWriteTimeout; 	for (;;) {		if (chip->state != FL_WRITING) {			/* Someone's suspended the write. Sleep */			DECLARE_WAITQUEUE(wait, current);			set_current_state(TASK_UNINTERRUPTIBLE);			add_wait_queue(&chip->wq, &wait);			cfi_spin_unlock(chip->mutex);			schedule();			remove_wait_queue(&chip->wq, &wait);			timeo = jiffies + (HZ / 2); /* FIXME */			cfi_spin_lock(chip->mutex);			continue;		}		if (chip_ready(map, adr))			goto op_done;		if (time_after(jiffies, timeo))			break;		/* Latency issues. Drop the lock, wait a while and retry */		cfi_spin_unlock(chip->mutex);		cfi_udelay(1);		cfi_spin_lock(chip->mutex);	}	printk(KERN_WARNING "MTD %s(): software timeout\n",	       __func__ );	/* reset on all failures. */	cfi_write( map, CMD(0xF0), chip->start );	/* FIXME - should have reset delay before continuing */	ret = -EIO; op_done:	chip->state = FL_READY;	put_chip(map, chip, adr);	cfi_spin_unlock(chip->mutex);	return ret;}static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,				  size_t *retlen, const u_char *buf){	struct map_info *map = mtd->priv;	struct cfi_private *cfi = map->fldrv_priv;	int ret = 0;	int chipnum;	unsigned long ofs, chipstart;	DECLARE_WAITQUEUE(wait, current);	*retlen = 0;	if (!len)		return 0;	chipnum = to >> cfi->chipshift;	ofs = to  - (chipnum << cfi->chipshift);	chipstart = cfi->chips[chipnum].start;	/* If it's not bus-aligned, do the first byte write */	if (ofs & (CFIDEV_BUSWIDTH-1)) {		unsigned long bus_ofs = ofs & ~(CFIDEV_BUSWIDTH-1);		int i = ofs - bus_ofs;		int n = 0;		u_char tmp_buf[8];		cfi_word datum; retry:		cfi_spin_lock(cfi->chips[chipnum].mutex);		if (cfi->chips[chipnum].state != FL_READY) {#if 0			printk(KERN_DEBUG "Waiting for chip to write, status = %d\n", cfi->chips[chipnum].state);#endif			set_current_state(TASK_UNINTERRUPTIBLE);			add_wait_queue(&cfi->chips[chipnum].wq, &wait);			cfi_spin_unlock(cfi->chips[chipnum].mutex);			schedule();			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);#if 0			if(signal_pending(current))				return -EINTR;#endif			goto retry;		}		map_copy_from(map, tmp_buf, bus_ofs + cfi->chips[chipnum].start, CFIDEV_BUSWIDTH);		cfi_spin_unlock(cfi->chips[chipnum].mutex);		while (len && i < CFIDEV_BUSWIDTH) {			tmp_buf[i++] = buf[n++];			len--;		}		/* already know that buswidth > 1 */		if (cfi_buswidth_is_2()) {			datum = *(__u16*)tmp_buf;		} else if (cfi_buswidth_is_4()) {			datum = *(__u32*)tmp_buf;#ifdef CFI_WORD_64		} else if (cfi_buswidth_is_8()) {			datum = *(__u64*)tmp_buf;#endif		} else {			printk(KERN_WARNING "MTD %s(): Unsupported buswidth %d\n",			       __func__, CFIDEV_BUSWIDTH);			return -EINVAL;		}		ret = do_write_oneword(map, &cfi->chips[chipnum], 				       bus_ofs, datum);		if (ret) 			return ret;				ofs += n;		buf += n;		(*retlen) += n;		if (ofs >> cfi->chipshift) {			chipnum ++; 			ofs = 0;			if (chipnum == cfi->numchips)				return 0;		}	}		/* We are now aligned, write as much as possible */	while(len >= CFIDEV_BUSWIDTH) {		cfi_word datum;		if (cfi_buswidth_is_1()) {			datum = *(__u8*)buf;		} else if (cfi_buswidth_is_2()) {			datum = *(__u16*)buf;		} else if (cfi_buswidth_is_4()) {			datum = *(__u32*)buf;#ifdef CFI_WORD_64		} else if (cfi_buswidth_is_8()) {			datum = *(__u64*)buf;#endif		} else {			printk(KERN_WARNING "MTD %s(): Unsupported buswidth %d\n",			       __func__, CFIDEV_BUSWIDTH);			return -EINVAL;		}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -