⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jacobi.m

📁 求解量子力学的薛定谔方程
💻 M
字号:
function f=jacobi(a,b,n);%> <jacobi.m> calculates the coefficients of the powers of %> (1-X)/2 in the Jacobi polynomial of order n. %> Defined eg in Edmonds, Angular Momentum in Quantum Mechanics or%> HMF Chapter 22.%> Call: jacobi(a,b,n) where a,b real > - 1, n non-neg integer.%> Output: a matrix of size (n+1)x(n+1); the m:th row consists of the %> coefficients of the polynomical of order m-1;%> The order of the coefficients is from n to 0.%> For evaluation write something like %> z=jacobi(a,b,n),  %> y=polyval(z(n,:),0.5*(1-X)); X argument which can be a matrix%> giving a matrix of size = size(X);%> or y = evalpol(z,0.5*(1-X)) when X is scalar or a row vector%> giving a matrix of size (n+1)*length(X);% GL 961123f=[]; %  Start on function matrixw=[]; %  start on function vectora1=1;a2=1;nn=[0:n]';g=gamma(nn+a+1)./fact(nn)/gamma(a+1);% ones(size(nn));	aa=-nn; % Parameters in hypergeometric series = aa,bb,cc	bb=a+b+1+nn;	cc=a+1;	if n==0	f=[g,f]; 	else	f=[g,f];				for r=1:n				a1=a1*(a+r);		a2=a2*r;		g=g.*(aa+r-1).*(bb+r-1)/(cc+r-1)/r;		f=[f,g];					end	endf=fliplr(f);%%% 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -