📄 numerov3.m
字号:
function f=numerov3(x0,x1,N,P,W,E,Y0,DY0);%> The file <numerov3.m> integrates the 1D Schrodinger equation %> for an 'arbitrary' potential using the Numerov method.%> IT IS JUST A MODIFICATION OF NUMEROV1 WITH SMALLER DEMAND ON MEMORY%> (by avoiding the creation of large matrices).%> It also allows the potential to be a function of a parameter.%> It produces the function values and derivatives at the second end %> point as a function of energy (to satisfy boundary condition),%> it does not keep the solution function.%> Call: numerov3(x0,x1,N,'pot(X,W)',W,E,Y0,DY0);%> (x0,x1) = end points of integration interval.%> N = number of steps (N subintervals of length h).%> P = 'pot(X,W)' if the potential function is stored in <pot.m>.%> We can let P be a row vector (size E) for each X!%> W = parameter as a row vector.%> E = energy lattice as a row vector, same size as W.%> Y0,DY0 = starting values in x0 , row vectors length(W).%> Output: f = [Y;DY] = final values of function and derivative in x1,%> size = [2,length(E)];%>%>
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -