⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jrevdct.c

📁 32位操作系统OS/2的MPEG播放机
💻 C
📖 第 1 页 / 共 3 页
字号:
		    tmp3 += z1 + z4;		} else {		    /* d1 == 0, d3 != 0, d5 != 0, d7 != 0 */		    z1 = d7;		    z2 = d5 + d3;		    z3 = d7 + d3;		    z5 = MULTIPLY(z3 + d5, FIX(1.175875602));		    		    tmp0 = MULTIPLY(d7, FIX(0.298631336)); 		    tmp1 = MULTIPLY(d5, FIX(2.053119869));		    tmp2 = MULTIPLY(d3, FIX(3.072711026));		    z1 = MULTIPLY(d7, - FIX(0.899976223));		    z2 = MULTIPLY(z2, - FIX(2.562915447));		    z3 = MULTIPLY(z3, - FIX(1.961570560));		    z4 = MULTIPLY(d5, - FIX(0.390180644));		    		    z3 += z5;		    z4 += z5;		    		    tmp0 += z1 + z3;		    tmp1 += z2 + z4;		    tmp2 += z2 + z3;		    tmp3 = z1 + z4;		}	    } else {		if (d1) {		    /* d1 != 0, d3 == 0, d5 != 0, d7 != 0 */		    z1 = d7 + d1;		    z2 = d5;		    z3 = d7;		    z4 = d5 + d1;		    z5 = MULTIPLY(z3 + z4, FIX(1.175875602));		    		    tmp0 = MULTIPLY(d7, FIX(0.298631336)); 		    tmp1 = MULTIPLY(d5, FIX(2.053119869));		    tmp3 = MULTIPLY(d1, FIX(1.501321110));		    z1 = MULTIPLY(z1, - FIX(0.899976223));		    z2 = MULTIPLY(d5, - FIX(2.562915447));		    z3 = MULTIPLY(d7, - FIX(1.961570560));		    z4 = MULTIPLY(z4, - FIX(0.390180644));		    		    z3 += z5;		    z4 += z5;		    		    tmp0 += z1 + z3;		    tmp1 += z2 + z4;		    tmp2 = z2 + z3;		    tmp3 += z1 + z4;		} else {		    /* d1 == 0, d3 == 0, d5 != 0, d7 != 0 */		    tmp0 = MULTIPLY(d7, - FIX(0.601344887)); 		    z1 = MULTIPLY(d7, - FIX(0.899976223));		    z3 = MULTIPLY(d7, - FIX(1.961570560));		    tmp1 = MULTIPLY(d5, - FIX(0.509795578));		    z2 = MULTIPLY(d5, - FIX(2.562915447));		    z4 = MULTIPLY(d5, - FIX(0.390180644));		    z5 = MULTIPLY(d5 + d7, FIX(1.175875602));		    		    z3 += z5;		    z4 += z5;		    		    tmp0 += z3;		    tmp1 += z4;		    tmp2 = z2 + z3;		    tmp3 = z1 + z4;		}	    }	} else {	    if (d3) {		if (d1) {		    /* d1 != 0, d3 != 0, d5 == 0, d7 != 0 */		    z1 = d7 + d1;		    z3 = d7 + d3;		    z5 = MULTIPLY(z3 + d1, FIX(1.175875602));		    		    tmp0 = MULTIPLY(d7, FIX(0.298631336)); 		    tmp2 = MULTIPLY(d3, FIX(3.072711026));		    tmp3 = MULTIPLY(d1, FIX(1.501321110));		    z1 = MULTIPLY(z1, - FIX(0.899976223));		    z2 = MULTIPLY(d3, - FIX(2.562915447));		    z3 = MULTIPLY(z3, - FIX(1.961570560));		    z4 = MULTIPLY(d1, - FIX(0.390180644));		    		    z3 += z5;		    z4 += z5;		    		    tmp0 += z1 + z3;		    tmp1 = z2 + z4;		    tmp2 += z2 + z3;		    tmp3 += z1 + z4;		} else {		    /* d1 == 0, d3 != 0, d5 == 0, d7 != 0 */		    z3 = d7 + d3;		    		    tmp0 = MULTIPLY(d7, - FIX(0.601344887)); 		    z1 = MULTIPLY(d7, - FIX(0.899976223));		    tmp2 = MULTIPLY(d3, FIX(0.509795579));		    z2 = MULTIPLY(d3, - FIX(2.562915447));		    z5 = MULTIPLY(z3, FIX(1.175875602));		    z3 = MULTIPLY(z3, - FIX(0.785694958));		    		    tmp0 += z3;		    tmp1 = z2 + z5;		    tmp2 += z3;		    tmp3 = z1 + z5;		}	    } else {		if (d1) {		    /* d1 != 0, d3 == 0, d5 == 0, d7 != 0 */		    z1 = d7 + d1;		    z5 = MULTIPLY(z1, FIX(1.175875602));		    z1 = MULTIPLY(z1, FIX(0.275899379));		    z3 = MULTIPLY(d7, - FIX(1.961570560));		    tmp0 = MULTIPLY(d7, - FIX(1.662939224)); 		    z4 = MULTIPLY(d1, - FIX(0.390180644));		    tmp3 = MULTIPLY(d1, FIX(1.111140466));		    tmp0 += z1;		    tmp1 = z4 + z5;		    tmp2 = z3 + z5;		    tmp3 += z1;		} else {		    /* d1 == 0, d3 == 0, d5 == 0, d7 != 0 */		    tmp0 = MULTIPLY(d7, - FIX(1.387039845));		    tmp1 = MULTIPLY(d7, FIX(1.175875602));		    tmp2 = MULTIPLY(d7, - FIX(0.785694958));		    tmp3 = MULTIPLY(d7, FIX(0.275899379));		}	    }	}    } else {	if (d5) {	    if (d3) {		if (d1) {		    /* d1 != 0, d3 != 0, d5 != 0, d7 == 0 */		    z2 = d5 + d3;		    z4 = d5 + d1;		    z5 = MULTIPLY(d3 + z4, FIX(1.175875602));		    		    tmp1 = MULTIPLY(d5, FIX(2.053119869));		    tmp2 = MULTIPLY(d3, FIX(3.072711026));		    tmp3 = MULTIPLY(d1, FIX(1.501321110));		    z1 = MULTIPLY(d1, - FIX(0.899976223));		    z2 = MULTIPLY(z2, - FIX(2.562915447));		    z3 = MULTIPLY(d3, - FIX(1.961570560));		    z4 = MULTIPLY(z4, - FIX(0.390180644));		    		    z3 += z5;		    z4 += z5;		    		    tmp0 = z1 + z3;		    tmp1 += z2 + z4;		    tmp2 += z2 + z3;		    tmp3 += z1 + z4;		} else {		    /* d1 == 0, d3 != 0, d5 != 0, d7 == 0 */		    z2 = d5 + d3;		    		    z5 = MULTIPLY(z2, FIX(1.175875602));		    tmp1 = MULTIPLY(d5, FIX(1.662939225));		    z4 = MULTIPLY(d5, - FIX(0.390180644));		    z2 = MULTIPLY(z2, - FIX(1.387039845));		    tmp2 = MULTIPLY(d3, FIX(1.111140466));		    z3 = MULTIPLY(d3, - FIX(1.961570560));		    		    tmp0 = z3 + z5;		    tmp1 += z2;		    tmp2 += z2;		    tmp3 = z4 + z5;		}	    } else {		if (d1) {		    /* d1 != 0, d3 == 0, d5 != 0, d7 == 0 */		    z4 = d5 + d1;		    		    z5 = MULTIPLY(z4, FIX(1.175875602));		    z1 = MULTIPLY(d1, - FIX(0.899976223));		    tmp3 = MULTIPLY(d1, FIX(0.601344887));		    tmp1 = MULTIPLY(d5, - FIX(0.509795578));		    z2 = MULTIPLY(d5, - FIX(2.562915447));		    z4 = MULTIPLY(z4, FIX(0.785694958));		    		    tmp0 = z1 + z5;		    tmp1 += z4;		    tmp2 = z2 + z5;		    tmp3 += z4;		} else {		    /* d1 == 0, d3 == 0, d5 != 0, d7 == 0 */		    tmp0 = MULTIPLY(d5, FIX(1.175875602));		    tmp1 = MULTIPLY(d5, FIX(0.275899380));		    tmp2 = MULTIPLY(d5, - FIX(1.387039845));		    tmp3 = MULTIPLY(d5, FIX(0.785694958));		}	    }	} else {	    if (d3) {		if (d1) {		    /* d1 != 0, d3 != 0, d5 == 0, d7 == 0 */		    z5 = d1 + d3;		    tmp3 = MULTIPLY(d1, FIX(0.211164243));		    tmp2 = MULTIPLY(d3, - FIX(1.451774981));		    z1 = MULTIPLY(d1, FIX(1.061594337));		    z2 = MULTIPLY(d3, - FIX(2.172734803));		    z4 = MULTIPLY(z5, FIX(0.785694958));		    z5 = MULTIPLY(z5, FIX(1.175875602));		    		    tmp0 = z1 - z4;		    tmp1 = z2 + z4;		    tmp2 += z5;		    tmp3 += z5;		} else {		    /* d1 == 0, d3 != 0, d5 == 0, d7 == 0 */		    tmp0 = MULTIPLY(d3, - FIX(0.785694958));		    tmp1 = MULTIPLY(d3, - FIX(1.387039845));		    tmp2 = MULTIPLY(d3, - FIX(0.275899379));		    tmp3 = MULTIPLY(d3, FIX(1.175875602));		}	    } else {		if (d1) {		    /* d1 != 0, d3 == 0, d5 == 0, d7 == 0 */		    tmp0 = MULTIPLY(d1, FIX(0.275899379));		    tmp1 = MULTIPLY(d1, FIX(0.785694958));		    tmp2 = MULTIPLY(d1, FIX(1.175875602));		    tmp3 = MULTIPLY(d1, FIX(1.387039845));		} else {		    /* d1 == 0, d3 == 0, d5 == 0, d7 == 0 */		    tmp0 = tmp1 = tmp2 = tmp3 = 0;		}	    }	}    }    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3,					   CONST_BITS+PASS1_BITS+3);    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3,					   CONST_BITS+PASS1_BITS+3);    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2,					   CONST_BITS+PASS1_BITS+3);    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2,					   CONST_BITS+PASS1_BITS+3);    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1,					   CONST_BITS+PASS1_BITS+3);    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1,					   CONST_BITS+PASS1_BITS+3);    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0,					   CONST_BITS+PASS1_BITS+3);    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0,					   CONST_BITS+PASS1_BITS+3);        dataptr++;			/* advance pointer to next column */  }}#elsevoidj_rev_dct_sparse (data, pos)      DCTBLOCK data;     int pos;{  j_rev_dct(data);}voidj_rev_dct (data)  DCTBLOCK data;{  INT32 tmp0, tmp1, tmp2, tmp3;  INT32 tmp10, tmp11, tmp12, tmp13;  INT32 z1, z2, z3, z4, z5;  register DCTELEM *dataptr;  int rowctr;  SHIFT_TEMPS  /* Pass 1: process rows. */  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */  /* furthermore, we scale the results by 2**PASS1_BITS. */  dataptr = data;  for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {    /* Due to quantization, we will usually find that many of the input     * coefficients are zero, especially the AC terms.  We can exploit this     * by short-circuiting the IDCT calculation for any row in which all     * the AC terms are zero.  In that case each output is equal to the     * DC coefficient (with scale factor as needed).     * With typical images and quantization tables, half or more of the     * row DCT calculations can be simplified this way.     */    if ((dataptr[1] | dataptr[2] | dataptr[3] | dataptr[4] |	 dataptr[5] | dataptr[6] | dataptr[7]) == 0) {      /* AC terms all zero */      DCTELEM dcval = (DCTELEM) (dataptr[0] << PASS1_BITS);            dataptr[0] = dcval;      dataptr[1] = dcval;      dataptr[2] = dcval;      dataptr[3] = dcval;      dataptr[4] = dcval;      dataptr[5] = dcval;      dataptr[6] = dcval;      dataptr[7] = dcval;            dataptr += DCTSIZE;	/* advance pointer to next row */      continue;    }    /* Even part: reverse the even part of the forward DCT. */    /* The rotator is sqrt(2)*c(-6). */    z2 = (INT32) dataptr[2];    z3 = (INT32) dataptr[6];    z1 = MULTIPLY(z2 + z3, FIX(0.541196100));    tmp2 = z1 + MULTIPLY(z3, - FIX(1.847759065));    tmp3 = z1 + MULTIPLY(z2, FIX(0.765366865));    tmp0 = ((INT32) dataptr[0] + (INT32) dataptr[4]) << CONST_BITS;    tmp1 = ((INT32) dataptr[0] - (INT32) dataptr[4]) << CONST_BITS;    tmp10 = tmp0 + tmp3;    tmp13 = tmp0 - tmp3;    tmp11 = tmp1 + tmp2;    tmp12 = tmp1 - tmp2;        /* Odd part per figure 8; the matrix is unitary and hence its     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.     */    tmp0 = (INT32) dataptr[7];    tmp1 = (INT32) dataptr[5];    tmp2 = (INT32) dataptr[3];    tmp3 = (INT32) dataptr[1];    z1 = tmp0 + tmp3;    z2 = tmp1 + tmp2;    z3 = tmp0 + tmp2;    z4 = tmp1 + tmp3;    z5 = MULTIPLY(z3 + z4, FIX(1.175875602)); /* sqrt(2) * c3 */        tmp0 = MULTIPLY(tmp0, FIX(0.298631336)); /* sqrt(2) * (-c1+c3+c5-c7) */    tmp1 = MULTIPLY(tmp1, FIX(2.053119869)); /* sqrt(2) * ( c1+c3-c5+c7) */    tmp2 = MULTIPLY(tmp2, FIX(3.072711026)); /* sqrt(2) * ( c1+c3+c5-c7) */    tmp3 = MULTIPLY(tmp3, FIX(1.501321110)); /* sqrt(2) * ( c1+c3-c5-c7) */    z1 = MULTIPLY(z1, - FIX(0.899976223)); /* sqrt(2) * (c7-c3) */    z2 = MULTIPLY(z2, - FIX(2.562915447)); /* sqrt(2) * (-c1-c3) */    z3 = MULTIPLY(z3, - FIX(1.961570560)); /* sqrt(2) * (-c3-c5) */    z4 = MULTIPLY(z4, - FIX(0.390180644)); /* sqrt(2) * (c5-c3) */        z3 += z5;    z4 += z5;        tmp0 += z1 + z3;    tmp1 += z2 + z4;    tmp2 += z2 + z3;    tmp3 += z1 + z4;    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */    dataptr[0] = (DCTELEM) DESCALE(tmp10 + tmp3, CONST_BITS-PASS1_BITS);    dataptr[7] = (DCTELEM) DESCALE(tmp10 - tmp3, CONST_BITS-PASS1_BITS);    dataptr[1] = (DCTELEM) DESCALE(tmp11 + tmp2, CONST_BITS-PASS1_BITS);    dataptr[6] = (DCTELEM) DESCALE(tmp11 - tmp2, CONST_BITS-PASS1_BITS);    dataptr[2] = (DCTELEM) DESCALE(tmp12 + tmp1, CONST_BITS-PASS1_BITS);    dataptr[5] = (DCTELEM) DESCALE(tmp12 - tmp1, CONST_BITS-PASS1_BITS);    dataptr[3] = (DCTELEM) DESCALE(tmp13 + tmp0, CONST_BITS-PASS1_BITS);    dataptr[4] = (DCTELEM) DESCALE(tmp13 - tmp0, CONST_BITS-PASS1_BITS);    dataptr += DCTSIZE;		/* advance pointer to next row */  }  /* Pass 2: process columns. */  /* Note that we must descale the results by a factor of 8 == 2**3, */  /* and also undo the PASS1_BITS scaling. */  dataptr = data;  for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {    /* Columns of zeroes can be exploited in the same way as we did with rows.     * However, the row calculation has created many nonzero AC terms, so the     * simplification applies less often (typically 5% to 10% of the time).     * On machines with very fast multiplication, it's possible that the     * test takes more time than it's worth.  In that case this section     * may be commented out.     */#ifndef NO_ZERO_COLUMN_TEST    if ((dataptr[DCTSIZE*1] | dataptr[DCTSIZE*2] | dataptr[DCTSIZE*3] |	 dataptr[DCTSIZE*4] | dataptr[DCTSIZE*5] | dataptr[DCTSIZE*6] |	 dataptr[DCTSIZE*7]) == 0) {      /* AC terms all zero */      DCTELEM dcval = (DCTELEM) DESCALE((INT32) dataptr[0], PASS1_BITS+3);            dataptr[DCTSIZE*0] = dcval;      dataptr[DCTSIZE*1] = dcval;      dataptr[DCTSIZE*2] = dcval;      dataptr[DCTSIZE*3] = dcval;      dataptr[DCTSIZE*4] = dcval;      dataptr[DCTSIZE*5] = dcval;      dataptr[DCTSIZE*6] = dcval;      dataptr[DCTSIZE*7] = dcval;            dataptr++;		/* advance pointer to next column */      continue;    }#endif    /* Even part: reverse the even part of the forward DCT. */    /* The rotator is sqrt(2)*c(-6). */    z2 = (INT32) dataptr[DCTSIZE*2];    z3 = (INT32) dataptr[DCTSIZE*6];    z1 = MULTIPLY(z2 + z3, FIX(0.541196100));    tmp2 = z1 + MULTIPLY(z3, - FIX(1.847759065));    tmp3 = z1 + MULTIPLY(z2, FIX(0.765366865));    tmp0 = ((INT32) dataptr[DCTSIZE*0] + (INT32) dataptr[DCTSIZE*4]) << CONST_BITS;    tmp1 = ((INT32) dataptr[DCTSIZE*0] - (INT32) dataptr[DCTSIZE*4]) << CONST_BITS;    tmp10 = tmp0 + tmp3;    tmp13 = tmp0 - tmp3;    tmp11 = tmp1 + tmp2;    tmp12 = tmp1 - tmp2;        /* Odd part per figure 8; the matrix is unitary and hence its     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.     */    tmp0 = (INT32) dataptr[DCTSIZE*7];    tmp1 = (INT32) dataptr[DCTSIZE*5];    tmp2 = (INT32) dataptr[DCTSIZE*3];    tmp3 = (INT32) dataptr[DCTSIZE*1];    z1 = tmp0 + tmp3;    z2 = tmp1 + tmp2;    z3 = tmp0 + tmp2;    z4 = tmp1 + tmp3;    z5 = MULTIPLY(z3 + z4, FIX(1.175875602)); /* sqrt(2) * c3 */        tmp0 = MULTIPLY(tmp0, FIX(0.298631336)); /* sqrt(2) * (-c1+c3+c5-c7) */    tmp1 = MULTIPLY(tmp1, FIX(2.053119869)); /* sqrt(2) * ( c1+c3-c5+c7) */    tmp2 = MULTIPLY(tmp2, FIX(3.072711026)); /* sqrt(2) * ( c1+c3+c5-c7) */    tmp3 = MULTIPLY(tmp3, FIX(1.501321110)); /* sqrt(2) * ( c1+c3-c5-c7) */    z1 = MULTIPLY(z1, - FIX(0.899976223)); /* sqrt(2) * (c7-c3) */    z2 = MULTIPLY(z2, - FIX(2.562915447)); /* sqrt(2) * (-c1-c3) */    z3 = MULTIPLY(z3, - FIX(1.961570560)); /* sqrt(2) * (-c3-c5) */    z4 = MULTIPLY(z4, - FIX(0.390180644)); /* sqrt(2) * (c5-c3) */        z3 += z5;    z4 += z5;        tmp0 += z1 + z3;    tmp1 += z2 + z4;    tmp2 += z2 + z3;    tmp3 += z1 + z4;    /* Final output stage: inputs are tmp10..tmp13, tmp0..tmp3 */    dataptr[DCTSIZE*0] = (DCTELEM) DESCALE(tmp10 + tmp3,					   CONST_BITS+PASS1_BITS+3);    dataptr[DCTSIZE*7] = (DCTELEM) DESCALE(tmp10 - tmp3,					   CONST_BITS+PASS1_BITS+3);    dataptr[DCTSIZE*1] = (DCTELEM) DESCALE(tmp11 + tmp2,					   CONST_BITS+PASS1_BITS+3);    dataptr[DCTSIZE*6] = (DCTELEM) DESCALE(tmp11 - tmp2,					   CONST_BITS+PASS1_BITS+3);    dataptr[DCTSIZE*2] = (DCTELEM) DESCALE(tmp12 + tmp1,					   CONST_BITS+PASS1_BITS+3);    dataptr[DCTSIZE*5] = (DCTELEM) DESCALE(tmp12 - tmp1,					   CONST_BITS+PASS1_BITS+3);    dataptr[DCTSIZE*3] = (DCTELEM) DESCALE(tmp13 + tmp0,					   CONST_BITS+PASS1_BITS+3);    dataptr[DCTSIZE*4] = (DCTELEM) DESCALE(tmp13 - tmp0,					   CONST_BITS+PASS1_BITS+3);        dataptr++;			/* advance pointer to next column */  }}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -