⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 jrevdct.c

📁 32位操作系统OS/2的MPEG播放机
💻 C
📖 第 1 页 / 共 3 页
字号:
/* * jrevdct.c * * Copyright (C) 1991, 1992, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains the basic inverse-DCT transformation subroutine. * * This implementation is based on an algorithm described in *   C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT *   Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, *   Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. * The primary algorithm described there uses 11 multiplies and 29 adds. * We use their alternate method with 12 multiplies and 32 adds. * The advantage of this method is that no data path contains more than one * multiplication; this allows a very simple and accurate implementation in * scaled fixed-point arithmetic, with a minimal number of shifts. *  * I've made lots of modifications to attempt to take advantage of the * sparse nature of the DCT matrices we're getting.  Although the logic * is cumbersome, it's straightforward and the resulting code is much * faster. * * A better way to do this would be to pass in the DCT block as a sparse * matrix, perhaps with the difference cases encoded. */#include <string.h>#include "video.h"#include "proto.h"#define GLOBAL			/* a function referenced thru EXTERNs */  /* We assume that right shift corresponds to signed division by 2 with * rounding towards minus infinity.  This is correct for typical "arithmetic * shift" instructions that shift in copies of the sign bit.  But some * C compilers implement >> with an unsigned shift.  For these machines you * must define RIGHT_SHIFT_IS_UNSIGNED. * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity. * It is only applied with constant shift counts.  SHIFT_TEMPS must be * included in the variables of any routine using RIGHT_SHIFT. */  #ifdef RIGHT_SHIFT_IS_UNSIGNED#define SHIFT_TEMPS	INT32 shift_temp;#define RIGHT_SHIFT(x,shft)  \	((shift_temp = (x)) < 0 ? \	 (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \	 (shift_temp >> (shft)))#else#define SHIFT_TEMPS#define RIGHT_SHIFT(x,shft)	((x) >> (shft))#endif/* * This routine is specialized to the case DCTSIZE = 8. */#if DCTSIZE != 8  Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */#endif/* * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT * on each column.  Direct algorithms are also available, but they are * much more complex and seem not to be any faster when reduced to code. * * The poop on this scaling stuff is as follows: * * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) * larger than the true IDCT outputs.  The final outputs are therefore * a factor of N larger than desired; since N=8 this can be cured by * a simple right shift at the end of the algorithm.  The advantage of * this arrangement is that we save two multiplications per 1-D IDCT, * because the y0 and y4 inputs need not be divided by sqrt(N). * * We have to do addition and subtraction of the integer inputs, which * is no problem, and multiplication by fractional constants, which is * a problem to do in integer arithmetic.  We multiply all the constants * by CONST_SCALE and convert them to integer constants (thus retaining * CONST_BITS bits of precision in the constants).  After doing a * multiplication we have to divide the product by CONST_SCALE, with proper * rounding, to produce the correct output.  This division can be done * cheaply as a right shift of CONST_BITS bits.  We postpone shifting * as long as possible so that partial sums can be added together with * full fractional precision. * * The outputs of the first pass are scaled up by PASS1_BITS bits so that * they are represented to better-than-integral precision.  These outputs * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word * with the recommended scaling.  (To scale up 12-bit sample data further, an * intermediate INT32 array would be needed.) * * To avoid overflow of the 32-bit intermediate results in pass 2, we must * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26.  Error analysis * shows that the values given below are the most effective. */#ifdef EIGHT_BIT_SAMPLES#define PASS1_BITS  2#else#define PASS1_BITS  1		/* lose a little precision to avoid overflow */#endif#define ONE	((INT32) 1)#define CONST_SCALE (ONE << CONST_BITS)/* Convert a positive real constant to an integer scaled by CONST_SCALE. * IMPORTANT: if your compiler doesn't do this arithmetic at compile time, * you will pay a significant penalty in run time.  In that case, figure * the correct integer constant values and insert them by hand. */#define FIX(x)	((INT32) ((x) * CONST_SCALE + 0.5))/* Descale and correctly round an INT32 value that's scaled by N bits. * We assume RIGHT_SHIFT rounds towards minus infinity, so adding * the fudge factor is correct for either sign of X. */#define DESCALE(x,n)  RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply; * this provides a useful speedup on many machines. * There is no way to specify a 16x16->32 multiply in portable C, but * some C compilers will do the right thing if you provide the correct * combination of casts. * NB: for 12-bit samples, a full 32-bit multiplication will be needed. */#ifdef EIGHT_BIT_SAMPLES#ifdef SHORTxSHORT_32		/* may work if 'int' is 32 bits */#define MULTIPLY(var,const)  (((INT16) (var)) * ((INT16) (const)))#endif#ifdef SHORTxLCONST_32		/* known to work with Microsoft C 6.0 */#define MULTIPLY(var,const)  (((INT16) (var)) * ((INT32) (const)))#endif#endif#ifndef MULTIPLY		/* default definition */#define MULTIPLY(var,const)  ((var) * (const))#endif/* Precomputed idct value arrays. */static DCTELEM PreIDCT[64][64];/* Pre compute singleton coefficient IDCT values. */voidinit_pre_idct() {  int i;  void j_rev_dct();  for (i=0; i<64; i++) {    memset((char *) PreIDCT[i], 0, 64*sizeof(DCTELEM));    PreIDCT[i][i] = 2048;    j_rev_dct(PreIDCT[i]);  }}#ifndef ORIG_DCT  /* * Perform the inverse DCT on one block of coefficients. */voidj_rev_dct_sparse (data, pos)     DCTBLOCK data;     int pos;{  register DCTELEM *dataptr;  short int val;  DCTELEM *ndataptr;  int scale, coeff, rr;  register int *dp;  register int v;  /* If DC Coefficient. */    if (pos == 0) {    dp = (int *)data;    v = *data;    /* Compute 32 bit value to assign.  This speeds things up a bit */    if (v < 0) val = (v-3)>>3;    else val = (v+4)>>3;    v = val | (val << 16);    dp[0] = v;      dp[1] = v;      dp[2] = v;      dp[3] = v;    dp[4] = v;      dp[5] = v;      dp[6] = v;      dp[7] = v;    dp[8] = v;      dp[9] = v;      dp[10] = v;      dp[11] = v;    dp[12] = v;      dp[13] = v;      dp[14] = v;      dp[15] = v;    dp[16] = v;      dp[17] = v;      dp[18] = v;      dp[19] = v;    dp[20] = v;      dp[21] = v;      dp[22] = v;      dp[23] = v;    dp[24] = v;      dp[25] = v;      dp[26] = v;      dp[27] = v;    dp[28] = v;      dp[29] = v;      dp[30] = v;      dp[31] = v;    return;  }    /* Some other coefficient. */  dataptr = (DCTELEM *)data;  coeff = dataptr[pos];  ndataptr = PreIDCT[pos];  for (rr=0; rr<4; rr++) {    dataptr[0] = (ndataptr[0] * coeff) >> (CONST_BITS-2);    dataptr[1] = (ndataptr[1] * coeff) >> (CONST_BITS-2);    dataptr[2] = (ndataptr[2] * coeff) >> (CONST_BITS-2);    dataptr[3] = (ndataptr[3] * coeff) >> (CONST_BITS-2);    dataptr[4] = (ndataptr[4] * coeff) >> (CONST_BITS-2);    dataptr[5] = (ndataptr[5] * coeff) >> (CONST_BITS-2);    dataptr[6] = (ndataptr[6] * coeff) >> (CONST_BITS-2);    dataptr[7] = (ndataptr[7] * coeff) >> (CONST_BITS-2);    dataptr[8] = (ndataptr[8] * coeff) >> (CONST_BITS-2);    dataptr[9] = (ndataptr[9] * coeff) >> (CONST_BITS-2);    dataptr[10] = (ndataptr[10] * coeff) >> (CONST_BITS-2);    dataptr[11] = (ndataptr[11] * coeff) >> (CONST_BITS-2);    dataptr[12] = (ndataptr[12] * coeff) >> (CONST_BITS-2);    dataptr[13] = (ndataptr[13] * coeff) >> (CONST_BITS-2);    dataptr[14] = (ndataptr[14] * coeff) >> (CONST_BITS-2);    dataptr[15] = (ndataptr[15] * coeff) >> (CONST_BITS-2);    dataptr += 16;    ndataptr += 16;  }  return;}voidj_rev_dct (data)     DCTBLOCK data;{  INT32 tmp0, tmp1, tmp2, tmp3;  INT32 tmp10, tmp11, tmp12, tmp13;  INT32 z1, z2, z3, z4, z5;  INT32 d0, d1, d2, d3, d4, d5, d6, d7;  register DCTELEM *dataptr;  int rowctr;  SHIFT_TEMPS     /* Pass 1: process rows. */  /* Note results are scaled up by sqrt(8) compared to a true IDCT; */  /* furthermore, we scale the results by 2**PASS1_BITS. */  dataptr = data;  for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) {    /* Due to quantization, we will usually find that many of the input     * coefficients are zero, especially the AC terms.  We can exploit this     * by short-circuiting the IDCT calculation for any row in which all     * the AC terms are zero.  In that case each output is equal to the     * DC coefficient (with scale factor as needed).     * With typical images and quantization tables, half or more of the     * row DCT calculations can be simplified this way.     */    register int *idataptr = (int*)dataptr;    d0 = dataptr[0];    d1 = dataptr[1];    if ((d1 == 0) && (idataptr[1] | idataptr[2] | idataptr[3]) == 0) {      /* AC terms all zero */      if (d0) {	  /* Compute a 32 bit value to assign. */	  DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS);	  register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000);	  	  idataptr[0] = v;	  idataptr[1] = v;	  idataptr[2] = v;	  idataptr[3] = v;      }            dataptr += DCTSIZE;	/* advance pointer to next row */      continue;    }    d2 = dataptr[2];    d3 = dataptr[3];    d4 = dataptr[4];    d5 = dataptr[5];    d6 = dataptr[6];    d7 = dataptr[7];    /* Even part: reverse the even part of the forward DCT. */    /* The rotator is sqrt(2)*c(-6). */    if (d6) {	if (d4) {	    if (d2) {		if (d0) {		    /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */		    z1 = MULTIPLY(d2 + d6, FIX(0.541196100));		    tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065));		    tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865));		    tmp0 = (d0 + d4) << CONST_BITS;		    tmp1 = (d0 - d4) << CONST_BITS;		    tmp10 = tmp0 + tmp3;		    tmp13 = tmp0 - tmp3;		    tmp11 = tmp1 + tmp2;		    tmp12 = tmp1 - tmp2;		} else {		    /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */		    z1 = MULTIPLY(d2 + d6, FIX(0.541196100));		    tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065));		    tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865));		    tmp0 = d4 << CONST_BITS;		    tmp10 = tmp0 + tmp3;		    tmp13 = tmp0 - tmp3;		    tmp11 = tmp2 - tmp0;		    tmp12 = -(tmp0 + tmp2);		}	    } else {		if (d0) {		    /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */		    tmp2 = MULTIPLY(d6, - FIX(1.306562965));		    tmp3 = MULTIPLY(d6, FIX(0.541196100));		    tmp0 = (d0 + d4) << CONST_BITS;		    tmp1 = (d0 - d4) << CONST_BITS;		    tmp10 = tmp0 + tmp3;		    tmp13 = tmp0 - tmp3;		    tmp11 = tmp1 + tmp2;		    tmp12 = tmp1 - tmp2;		} else {		    /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */		    tmp2 = MULTIPLY(d6, -FIX(1.306562965));		    tmp3 = MULTIPLY(d6, FIX(0.541196100));		    tmp0 = d4 << CONST_BITS;		    tmp10 = tmp0 + tmp3;		    tmp13 = tmp0 - tmp3;		    tmp11 = tmp2 - tmp0;		    tmp12 = -(tmp0 + tmp2);		}	    }	} else {	    if (d2) {		if (d0) {		    /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */		    z1 = MULTIPLY(d2 + d6, FIX(0.541196100));		    tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065));		    tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865));		    tmp0 = d0 << CONST_BITS;		    tmp10 = tmp0 + tmp3;		    tmp13 = tmp0 - tmp3;		    tmp11 = tmp0 + tmp2;		    tmp12 = tmp0 - tmp2;		} else {		    /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */		    z1 = MULTIPLY(d2 + d6, FIX(0.541196100));		    tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065));		    tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865));		    tmp10 = tmp3;		    tmp13 = -tmp3;		    tmp11 = tmp2;		    tmp12 = -tmp2;		}	    } else {		if (d0) {		    /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */		    tmp2 = MULTIPLY(d6, - FIX(1.306562965));		    tmp3 = MULTIPLY(d6, FIX(0.541196100));		    tmp0 = d0 << CONST_BITS;		    tmp10 = tmp0 + tmp3;		    tmp13 = tmp0 - tmp3;		    tmp11 = tmp0 + tmp2;		    tmp12 = tmp0 - tmp2;		} else {		    /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */		    tmp2 = MULTIPLY(d6, - FIX(1.306562965));		    tmp3 = MULTIPLY(d6, FIX(0.541196100));		    tmp10 = tmp3;		    tmp13 = -tmp3;		    tmp11 = tmp2;		    tmp12 = -tmp2;		}	    }	}    } else {	if (d4) {	    if (d2) {		if (d0) {		    /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */		    tmp2 = MULTIPLY(d2, FIX(0.541196100));		    tmp3 = MULTIPLY(d2, FIX(1.306562965));		    tmp0 = (d0 + d4) << CONST_BITS;		    tmp1 = (d0 - d4) << CONST_BITS;		    tmp10 = tmp0 + tmp3;		    tmp13 = tmp0 - tmp3;		    tmp11 = tmp1 + tmp2;		    tmp12 = tmp1 - tmp2;		} else {		    /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */		    tmp2 = MULTIPLY(d2, FIX(0.541196100));		    tmp3 = MULTIPLY(d2, FIX(1.306562965));		    tmp0 = d4 << CONST_BITS;		    tmp10 = tmp0 + tmp3;		    tmp13 = tmp0 - tmp3;		    tmp11 = tmp2 - tmp0;		    tmp12 = -(tmp0 + tmp2);		}	    } else {		if (d0) {		    /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */		    tmp10 = tmp13 = (d0 + d4) << CONST_BITS;		    tmp11 = tmp12 = (d0 - d4) << CONST_BITS;		} else {		    /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */		    tmp10 = tmp13 = d4 << CONST_BITS;		    tmp11 = tmp12 = -tmp10;		}	    }	} else {	    if (d2) {		if (d0) {		    /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */		    tmp2 = MULTIPLY(d2, FIX(0.541196100));		    tmp3 = MULTIPLY(d2, FIX(1.306562965));		    tmp0 = d0 << CONST_BITS;		    tmp10 = tmp0 + tmp3;		    tmp13 = tmp0 - tmp3;		    tmp11 = tmp0 + tmp2;		    tmp12 = tmp0 - tmp2;		} else {		    /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */		    tmp2 = MULTIPLY(d2, FIX(0.541196100));		    tmp3 = MULTIPLY(d2, FIX(1.306562965));		    tmp10 = tmp3;		    tmp13 = -tmp3;		    tmp11 = tmp2;		    tmp12 = -tmp2;		}	    } else {		if (d0) {		    /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */		    tmp10 = tmp13 = tmp11 = tmp12 = d0 << CONST_BITS;		} else {		    /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */		    tmp10 = tmp13 = tmp11 = tmp12 = 0;		}	    }	}    }    /* Odd part per figure 8; the matrix is unitary and hence its     * transpose is its inverse.  i0..i3 are y7,y5,y3,y1 respectively.     */    if (d7) {	if (d5) {	    if (d3) {		if (d1) {		    /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */		    z1 = d7 + d1;		    z2 = d5 + d3;		    z3 = d7 + d3;		    z4 = d5 + d1;		    z5 = MULTIPLY(z3 + z4, FIX(1.175875602));		    		    tmp0 = MULTIPLY(d7, FIX(0.298631336)); 		    tmp1 = MULTIPLY(d5, FIX(2.053119869));		    tmp2 = MULTIPLY(d3, FIX(3.072711026));		    tmp3 = MULTIPLY(d1, FIX(1.501321110));		    z1 = MULTIPLY(z1, - FIX(0.899976223));

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -