📄 jrevdct.c
字号:
/* * jrevdct.c * * Copyright (C) 1991, 1992, Thomas G. Lane. * This file is part of the Independent JPEG Group's software. * For conditions of distribution and use, see the accompanying README file. * * This file contains the basic inverse-DCT transformation subroutine. * * This implementation is based on an algorithm described in * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. * The primary algorithm described there uses 11 multiplies and 29 adds. * We use their alternate method with 12 multiplies and 32 adds. * The advantage of this method is that no data path contains more than one * multiplication; this allows a very simple and accurate implementation in * scaled fixed-point arithmetic, with a minimal number of shifts. * * I've made lots of modifications to attempt to take advantage of the * sparse nature of the DCT matrices we're getting. Although the logic * is cumbersome, it's straightforward and the resulting code is much * faster. * * A better way to do this would be to pass in the DCT block as a sparse * matrix, perhaps with the difference cases encoded. */#include <string.h>#include "video.h"#include "proto.h"#define GLOBAL /* a function referenced thru EXTERNs */ /* We assume that right shift corresponds to signed division by 2 with * rounding towards minus infinity. This is correct for typical "arithmetic * shift" instructions that shift in copies of the sign bit. But some * C compilers implement >> with an unsigned shift. For these machines you * must define RIGHT_SHIFT_IS_UNSIGNED. * RIGHT_SHIFT provides a proper signed right shift of an INT32 quantity. * It is only applied with constant shift counts. SHIFT_TEMPS must be * included in the variables of any routine using RIGHT_SHIFT. */ #ifdef RIGHT_SHIFT_IS_UNSIGNED#define SHIFT_TEMPS INT32 shift_temp;#define RIGHT_SHIFT(x,shft) \ ((shift_temp = (x)) < 0 ? \ (shift_temp >> (shft)) | ((~((INT32) 0)) << (32-(shft))) : \ (shift_temp >> (shft)))#else#define SHIFT_TEMPS#define RIGHT_SHIFT(x,shft) ((x) >> (shft))#endif/* * This routine is specialized to the case DCTSIZE = 8. */#if DCTSIZE != 8 Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */#endif/* * A 2-D IDCT can be done by 1-D IDCT on each row followed by 1-D IDCT * on each column. Direct algorithms are also available, but they are * much more complex and seem not to be any faster when reduced to code. * * The poop on this scaling stuff is as follows: * * Each 1-D IDCT step produces outputs which are a factor of sqrt(N) * larger than the true IDCT outputs. The final outputs are therefore * a factor of N larger than desired; since N=8 this can be cured by * a simple right shift at the end of the algorithm. The advantage of * this arrangement is that we save two multiplications per 1-D IDCT, * because the y0 and y4 inputs need not be divided by sqrt(N). * * We have to do addition and subtraction of the integer inputs, which * is no problem, and multiplication by fractional constants, which is * a problem to do in integer arithmetic. We multiply all the constants * by CONST_SCALE and convert them to integer constants (thus retaining * CONST_BITS bits of precision in the constants). After doing a * multiplication we have to divide the product by CONST_SCALE, with proper * rounding, to produce the correct output. This division can be done * cheaply as a right shift of CONST_BITS bits. We postpone shifting * as long as possible so that partial sums can be added together with * full fractional precision. * * The outputs of the first pass are scaled up by PASS1_BITS bits so that * they are represented to better-than-integral precision. These outputs * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word * with the recommended scaling. (To scale up 12-bit sample data further, an * intermediate INT32 array would be needed.) * * To avoid overflow of the 32-bit intermediate results in pass 2, we must * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis * shows that the values given below are the most effective. */#ifdef EIGHT_BIT_SAMPLES#define PASS1_BITS 2#else#define PASS1_BITS 1 /* lose a little precision to avoid overflow */#endif#define ONE ((INT32) 1)#define CONST_SCALE (ONE << CONST_BITS)/* Convert a positive real constant to an integer scaled by CONST_SCALE. * IMPORTANT: if your compiler doesn't do this arithmetic at compile time, * you will pay a significant penalty in run time. In that case, figure * the correct integer constant values and insert them by hand. */#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))/* Descale and correctly round an INT32 value that's scaled by N bits. * We assume RIGHT_SHIFT rounds towards minus infinity, so adding * the fudge factor is correct for either sign of X. */#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result. * For 8-bit samples with the recommended scaling, all the variable * and constant values involved are no more than 16 bits wide, so a * 16x16->32 bit multiply can be used instead of a full 32x32 multiply; * this provides a useful speedup on many machines. * There is no way to specify a 16x16->32 multiply in portable C, but * some C compilers will do the right thing if you provide the correct * combination of casts. * NB: for 12-bit samples, a full 32-bit multiplication will be needed. */#ifdef EIGHT_BIT_SAMPLES#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */#define MULTIPLY(var,const) (((INT16) (var)) * ((INT16) (const)))#endif#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */#define MULTIPLY(var,const) (((INT16) (var)) * ((INT32) (const)))#endif#endif#ifndef MULTIPLY /* default definition */#define MULTIPLY(var,const) ((var) * (const))#endif/* Precomputed idct value arrays. */static DCTELEM PreIDCT[64][64];/* Pre compute singleton coefficient IDCT values. */voidinit_pre_idct() { int i; void j_rev_dct(); for (i=0; i<64; i++) { memset((char *) PreIDCT[i], 0, 64*sizeof(DCTELEM)); PreIDCT[i][i] = 2048; j_rev_dct(PreIDCT[i]); }}#ifndef ORIG_DCT /* * Perform the inverse DCT on one block of coefficients. */voidj_rev_dct_sparse (data, pos) DCTBLOCK data; int pos;{ register DCTELEM *dataptr; short int val; DCTELEM *ndataptr; int scale, coeff, rr; register int *dp; register int v; /* If DC Coefficient. */ if (pos == 0) { dp = (int *)data; v = *data; /* Compute 32 bit value to assign. This speeds things up a bit */ if (v < 0) val = (v-3)>>3; else val = (v+4)>>3; v = val | (val << 16); dp[0] = v; dp[1] = v; dp[2] = v; dp[3] = v; dp[4] = v; dp[5] = v; dp[6] = v; dp[7] = v; dp[8] = v; dp[9] = v; dp[10] = v; dp[11] = v; dp[12] = v; dp[13] = v; dp[14] = v; dp[15] = v; dp[16] = v; dp[17] = v; dp[18] = v; dp[19] = v; dp[20] = v; dp[21] = v; dp[22] = v; dp[23] = v; dp[24] = v; dp[25] = v; dp[26] = v; dp[27] = v; dp[28] = v; dp[29] = v; dp[30] = v; dp[31] = v; return; } /* Some other coefficient. */ dataptr = (DCTELEM *)data; coeff = dataptr[pos]; ndataptr = PreIDCT[pos]; for (rr=0; rr<4; rr++) { dataptr[0] = (ndataptr[0] * coeff) >> (CONST_BITS-2); dataptr[1] = (ndataptr[1] * coeff) >> (CONST_BITS-2); dataptr[2] = (ndataptr[2] * coeff) >> (CONST_BITS-2); dataptr[3] = (ndataptr[3] * coeff) >> (CONST_BITS-2); dataptr[4] = (ndataptr[4] * coeff) >> (CONST_BITS-2); dataptr[5] = (ndataptr[5] * coeff) >> (CONST_BITS-2); dataptr[6] = (ndataptr[6] * coeff) >> (CONST_BITS-2); dataptr[7] = (ndataptr[7] * coeff) >> (CONST_BITS-2); dataptr[8] = (ndataptr[8] * coeff) >> (CONST_BITS-2); dataptr[9] = (ndataptr[9] * coeff) >> (CONST_BITS-2); dataptr[10] = (ndataptr[10] * coeff) >> (CONST_BITS-2); dataptr[11] = (ndataptr[11] * coeff) >> (CONST_BITS-2); dataptr[12] = (ndataptr[12] * coeff) >> (CONST_BITS-2); dataptr[13] = (ndataptr[13] * coeff) >> (CONST_BITS-2); dataptr[14] = (ndataptr[14] * coeff) >> (CONST_BITS-2); dataptr[15] = (ndataptr[15] * coeff) >> (CONST_BITS-2); dataptr += 16; ndataptr += 16; } return;}voidj_rev_dct (data) DCTBLOCK data;{ INT32 tmp0, tmp1, tmp2, tmp3; INT32 tmp10, tmp11, tmp12, tmp13; INT32 z1, z2, z3, z4, z5; INT32 d0, d1, d2, d3, d4, d5, d6, d7; register DCTELEM *dataptr; int rowctr; SHIFT_TEMPS /* Pass 1: process rows. */ /* Note results are scaled up by sqrt(8) compared to a true IDCT; */ /* furthermore, we scale the results by 2**PASS1_BITS. */ dataptr = data; for (rowctr = DCTSIZE-1; rowctr >= 0; rowctr--) { /* Due to quantization, we will usually find that many of the input * coefficients are zero, especially the AC terms. We can exploit this * by short-circuiting the IDCT calculation for any row in which all * the AC terms are zero. In that case each output is equal to the * DC coefficient (with scale factor as needed). * With typical images and quantization tables, half or more of the * row DCT calculations can be simplified this way. */ register int *idataptr = (int*)dataptr; d0 = dataptr[0]; d1 = dataptr[1]; if ((d1 == 0) && (idataptr[1] | idataptr[2] | idataptr[3]) == 0) { /* AC terms all zero */ if (d0) { /* Compute a 32 bit value to assign. */ DCTELEM dcval = (DCTELEM) (d0 << PASS1_BITS); register int v = (dcval & 0xffff) | ((dcval << 16) & 0xffff0000); idataptr[0] = v; idataptr[1] = v; idataptr[2] = v; idataptr[3] = v; } dataptr += DCTSIZE; /* advance pointer to next row */ continue; } d2 = dataptr[2]; d3 = dataptr[3]; d4 = dataptr[4]; d5 = dataptr[5]; d6 = dataptr[6]; d7 = dataptr[7]; /* Even part: reverse the even part of the forward DCT. */ /* The rotator is sqrt(2)*c(-6). */ if (d6) { if (d4) { if (d2) { if (d0) { /* d0 != 0, d2 != 0, d4 != 0, d6 != 0 */ z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); tmp0 = (d0 + d4) << CONST_BITS; tmp1 = (d0 - d4) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; } else { /* d0 == 0, d2 != 0, d4 != 0, d6 != 0 */ z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); tmp0 = d4 << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp2 - tmp0; tmp12 = -(tmp0 + tmp2); } } else { if (d0) { /* d0 != 0, d2 == 0, d4 != 0, d6 != 0 */ tmp2 = MULTIPLY(d6, - FIX(1.306562965)); tmp3 = MULTIPLY(d6, FIX(0.541196100)); tmp0 = (d0 + d4) << CONST_BITS; tmp1 = (d0 - d4) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; } else { /* d0 == 0, d2 == 0, d4 != 0, d6 != 0 */ tmp2 = MULTIPLY(d6, -FIX(1.306562965)); tmp3 = MULTIPLY(d6, FIX(0.541196100)); tmp0 = d4 << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp2 - tmp0; tmp12 = -(tmp0 + tmp2); } } } else { if (d2) { if (d0) { /* d0 != 0, d2 != 0, d4 == 0, d6 != 0 */ z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); tmp0 = d0 << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp0 + tmp2; tmp12 = tmp0 - tmp2; } else { /* d0 == 0, d2 != 0, d4 == 0, d6 != 0 */ z1 = MULTIPLY(d2 + d6, FIX(0.541196100)); tmp2 = z1 + MULTIPLY(d6, - FIX(1.847759065)); tmp3 = z1 + MULTIPLY(d2, FIX(0.765366865)); tmp10 = tmp3; tmp13 = -tmp3; tmp11 = tmp2; tmp12 = -tmp2; } } else { if (d0) { /* d0 != 0, d2 == 0, d4 == 0, d6 != 0 */ tmp2 = MULTIPLY(d6, - FIX(1.306562965)); tmp3 = MULTIPLY(d6, FIX(0.541196100)); tmp0 = d0 << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp0 + tmp2; tmp12 = tmp0 - tmp2; } else { /* d0 == 0, d2 == 0, d4 == 0, d6 != 0 */ tmp2 = MULTIPLY(d6, - FIX(1.306562965)); tmp3 = MULTIPLY(d6, FIX(0.541196100)); tmp10 = tmp3; tmp13 = -tmp3; tmp11 = tmp2; tmp12 = -tmp2; } } } } else { if (d4) { if (d2) { if (d0) { /* d0 != 0, d2 != 0, d4 != 0, d6 == 0 */ tmp2 = MULTIPLY(d2, FIX(0.541196100)); tmp3 = MULTIPLY(d2, FIX(1.306562965)); tmp0 = (d0 + d4) << CONST_BITS; tmp1 = (d0 - d4) << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp1 + tmp2; tmp12 = tmp1 - tmp2; } else { /* d0 == 0, d2 != 0, d4 != 0, d6 == 0 */ tmp2 = MULTIPLY(d2, FIX(0.541196100)); tmp3 = MULTIPLY(d2, FIX(1.306562965)); tmp0 = d4 << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp2 - tmp0; tmp12 = -(tmp0 + tmp2); } } else { if (d0) { /* d0 != 0, d2 == 0, d4 != 0, d6 == 0 */ tmp10 = tmp13 = (d0 + d4) << CONST_BITS; tmp11 = tmp12 = (d0 - d4) << CONST_BITS; } else { /* d0 == 0, d2 == 0, d4 != 0, d6 == 0 */ tmp10 = tmp13 = d4 << CONST_BITS; tmp11 = tmp12 = -tmp10; } } } else { if (d2) { if (d0) { /* d0 != 0, d2 != 0, d4 == 0, d6 == 0 */ tmp2 = MULTIPLY(d2, FIX(0.541196100)); tmp3 = MULTIPLY(d2, FIX(1.306562965)); tmp0 = d0 << CONST_BITS; tmp10 = tmp0 + tmp3; tmp13 = tmp0 - tmp3; tmp11 = tmp0 + tmp2; tmp12 = tmp0 - tmp2; } else { /* d0 == 0, d2 != 0, d4 == 0, d6 == 0 */ tmp2 = MULTIPLY(d2, FIX(0.541196100)); tmp3 = MULTIPLY(d2, FIX(1.306562965)); tmp10 = tmp3; tmp13 = -tmp3; tmp11 = tmp2; tmp12 = -tmp2; } } else { if (d0) { /* d0 != 0, d2 == 0, d4 == 0, d6 == 0 */ tmp10 = tmp13 = tmp11 = tmp12 = d0 << CONST_BITS; } else { /* d0 == 0, d2 == 0, d4 == 0, d6 == 0 */ tmp10 = tmp13 = tmp11 = tmp12 = 0; } } } } /* Odd part per figure 8; the matrix is unitary and hence its * transpose is its inverse. i0..i3 are y7,y5,y3,y1 respectively. */ if (d7) { if (d5) { if (d3) { if (d1) { /* d1 != 0, d3 != 0, d5 != 0, d7 != 0 */ z1 = d7 + d1; z2 = d5 + d3; z3 = d7 + d3; z4 = d5 + d1; z5 = MULTIPLY(z3 + z4, FIX(1.175875602)); tmp0 = MULTIPLY(d7, FIX(0.298631336)); tmp1 = MULTIPLY(d5, FIX(2.053119869)); tmp2 = MULTIPLY(d3, FIX(3.072711026)); tmp3 = MULTIPLY(d1, FIX(1.501321110)); z1 = MULTIPLY(z1, - FIX(0.899976223));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -