📄 pci_machdep.c
字号:
stat |= 1 << 6; /* write and readback to force a posting */ RM9K_WRITE(0x6fc, stat); stat = RM9K_READ(0x6fc); /* set 'transmit off' bit */ stat |= 1 << 7; /* write and readback to force a posting */ RM9K_WRITE(0x6fc, stat); stat = RM9K_READ(0x6fc); } /* * Set up mapping for PCI to localmem accesses. * config regs to find mapping and size. BAR and * size register should be set to match SDRAM SCS. * We use PCI0 I/O and PCI0 MEM0. Same for PCI1. */ stat = GT_READ(CPU_BASE_ADDRESS_ENABLE); stat |= (1<<11) | (1<<12) | (1<<13) | (1<<16) | (1<<17) | (1<<18); stat &= ~((1<<9) | (1<<10) | (1<<14) | (1<<15)); GT_WRITE(CPU_BASE_ADDRESS_ENABLE, stat); if (hypertransport_enable) { RM9K_WRITE(0x610, 6); /* HTBAR0 */ RM9K_WRITE(0x688, 0xffff); /* HTMASK0 */ } for(i = 0; i < NBARS; i++) { u_int32_t baselo, basesize; baselo = GT_READ(barlist[i].scslow) << 16; basesize = (GT_READ(barlist[i].scssize) + 1) << 16; basesize = -1; /* bus 0 */ tag = _pci_make_tag(0, 0, (barlist[i].barl & 0x700) >> 8); stat = _pci_conf_read(tag, barlist[i].barl & 0xff) & 0xffff; stat |= baselo & 0xfffff000; _pci_conf_write(tag, barlist[i].barl & 0xff, stat); _pci_conf_write(tag, barlist[i].barh & 0xff, 0); /* bus 1 */ tag = _pci_make_tag(1, 0, (barlist[i].barl & 0x700) >> 8); stat = _pci_conf_read(tag, barlist[i].barl & 0xff) & 0xffff; stat |= baselo & 0xfffff000; _pci_conf_write(tag, barlist[i].barl & 0xff, stat); _pci_conf_write(tag, barlist[i].barh & 0xff, 0); /* set size registers */ GT_WRITE(barlist[i].pci0size, basesize & 0xfffff000); GT_WRITE(barlist[i].pci1size, basesize & 0xfffff000); } /* Configure the Internal Registers decode space */ /* bus 0 */ tag = _pci_make_tag(0, 0, 0); stat = _pci_conf_read(tag, PCI_INTERNAL_REGISTERS_MEMORY_MAPPED_BASE_ADDRESS) & 0xffff; stat |= GT_BASE_ADDR & 0xfffff000; _pci_conf_write(tag, PCI_INTERNAL_REGISTERS_MEMORY_MAPPED_BASE_ADDRESS, stat); /* bus 1 */ tag = _pci_make_tag(1, 0, 0); stat = _pci_conf_read(tag, PCI_INTERNAL_REGISTERS_MEMORY_MAPPED_BASE_ADDRESS) & 0xffff; stat |= GT_BASE_ADDR & 0xfffff000; _pci_conf_write(tag, PCI_INTERNAL_REGISTERS_MEMORY_MAPPED_BASE_ADDRESS, stat); /* enable the PCI slave windows we want */ stat = GT_READ(PCI_0BASE_ADDRESS_REGISTERS_ENABLE); stat |= GT_READ(CPU_BASE_ADDRESS_ENABLE) & 0x07ff; GT_WRITE(PCI_0BASE_ADDRESS_REGISTERS_ENABLE, stat); stat = GT_READ(PCI_1BASE_ADDRESS_REGISTERS_ENABLE); stat |= GT_READ(CPU_BASE_ADDRESS_ENABLE) & 0x07ff; GT_WRITE(PCI_1BASE_ADDRESS_REGISTERS_ENABLE, stat); return(3);}/* * Called to reinitialise the bridge after we've scanned each PCI device * and know what is possible. We also set up the interrupt controller * routing and level control registers. */void_pci_hwreinit (void){}void_pci_flush (void){}/* * Map the CPU virtual address of an area of local memory to a PCI * address that can be used by a PCI bus master to access it. */vm_offset_t_pci_dmamap(va, len) vm_offset_t va; unsigned int len;{ return(pci_local_mem_pci_base + VA_TO_PA (va));}/* * Map the PCI address of an area of local memory to a CPU physical * address. */vm_offset_t_pci_cpumap(pcia, len) vm_offset_t pcia; unsigned int len;{ return PA_TO_VA(pcia - pci_local_mem_pci_base);}/* * Make pci tag from bus, device and function data. */pcitag_t_pci_make_tag(bus, device, function) int bus; int device; int function;{ pcitag_t tag; tag = (bus << 16) | (device << 11) | (function << 8); return(tag);}/* * Break up a pci tag to bus, device function components. */void_pci_break_tag(tag, busp, devicep, functionp) pcitag_t tag; int *busp; int *devicep; int *functionp;{ if (busp) { *busp = (tag >> 16) & 255; } if (devicep) { *devicep = (tag >> 11) & 31; } if (functionp) { *functionp = (tag >> 8) & 7; }}int_pci_canscan (pcitag_t tag){ int bus, device, function; _pci_break_tag (tag, &bus, &device, &function); if(device == 0) { return(0); /* Ignore the Discovery and HT host itself */ } return (1);}/* * Read a value form PCI configuration space. Support for * all three data sizes (byte, halfword and word) is provided. */static pcireg_t_pci_conf_readn(tag, reg, width) pcitag_t tag; int reg; int width;{ pcireg_t data; u_int32_t adr; int bus, device, function; if (reg & (width-1) || reg < 0 || reg >= 0x100) { if (_pciverbose >= 1) { _pci_tagprintf (tag, "_pci_conf_read: bad reg 0x%x\r\n", reg); } return ~0; } _pci_break_tag (tag, &bus, &device, &function); /* Type 0 configuration on onboard PCI bus */ if (device > 29 || function > 7) { return ~0; /* device out of range */ } adr = (bus << 16) | (device << 11) | (function << 8) | reg | GT_IPCI_CFGADDR_ConfigEn; if(bus == 0) { GT_WRITE(PCI_0CONFIGURATION_ADDRESS, adr); data = GT_READ(PCI_0CONFIGURATION_DATA_VIRTUAL_REGISTER); } else if (bus == 1 ) { GT_WRITE(PCI_1CONFIGURATION_ADDRESS, adr); data = GT_READ(PCI_1CONFIGURATION_DATA_VIRTUAL_REGISTER); } else { if (!hypertransport_enable || device != 1) return ~0; /* HyperTransport */ /* determine if a Type 1 cycle is needed */ adr = (device << 11) | (function << 8) | reg | 0x80000000; if (bus != 2) { adr |= (bus << 16) | 1; } RM9K_WRITE(0x6f8, adr); if (read32_or_trap((int32_t *)(RM9K_BASE_ADDR+0x6fc))) data = ~0; else data = RM9K_READ(0x6fc); } return data;}pcireg_t_pci_conf_read(pcitag_t tag, int reg){ return _pci_conf_readn(tag, reg, 4);}/* * Write a value to PCI configuration space. */static void_pci_conf_writen(tag, reg, data, width) pcitag_t tag; int reg; pcireg_t data; int width;{ u_int32_t adr; int bus, device, function; if (reg & (width-1) || reg < 0 || reg >= 0x100) { if (_pciverbose >= 1) { _pci_tagprintf(tag, "_pci_conf_write: bad reg 0x%x\r\n", reg); } return; } _pci_break_tag (tag, &bus, &device, &function); /* Type 0 configuration on onboard PCI buses */ if (device > 29 || function > 7) { return; /* device out of range */ } adr = (bus << 16) | (device << 11) | (function << 8) | reg | GT_IPCI_CFGADDR_ConfigEn; if(bus == 0) { GT_WRITE(PCI_0CONFIGURATION_ADDRESS, adr); GT_WRITE(PCI_0CONFIGURATION_DATA_VIRTUAL_REGISTER, data); } else if (bus == 1) { GT_WRITE(PCI_1CONFIGURATION_ADDRESS, adr); GT_WRITE(PCI_1CONFIGURATION_DATA_VIRTUAL_REGISTER, data); } else { if (!hypertransport_enable) return; /* HyperTransport */ /* determine if a Type 1 cycle is needed */ adr = (device << 11) | (function << 8) | reg | 0x80000000; if (bus != 2) { adr |= (bus << 16) | 1; } RM9K_WRITE(0x6f8, adr); RM9K_WRITE(0x6fc, data); }}void_pci_conf_write(pcitag_t tag, int reg, pcireg_t data){ _pci_conf_writen (tag, reg, data, 4);}/* * Get contents of PCI Mapping register and do any machine * dependent mapping setup. */int_pci_map_port(tag, reg, port) pcitag_t tag; int reg; unsigned int *port;{ pcireg_t address; if (reg < PCI_MAPREG_START || reg >= PCI_MAPREG_END || (reg & 3)) { if (_pciverbose >= 1) { _pci_tagprintf(tag, "_pci_map_port: bad request\r\n"); } return -1; } address = _pci_conf_read(tag, reg); if (PCI_MAPREG_TYPE(address) != PCI_MAPREG_TYPE_IO) { if (_pciverbose >= 1) { _pci_tagprintf (tag, "_pci_map_port: attempt to i/o map a memory region\r\n"); } return(-1); } *port = (address & PCI_MAPREG_IO_ADDR_MASK) - PCI_IO_SPACE_PCI_BASE; return(0);}void *_pci_map_int(tag, level, func, arg) pcitag_t tag; int level; int (*func) __P((void *)); void *arg;{ pcireg_t data; int pin, bus, device; data = _pci_conf_read(tag, PCI_INTERRUPT_REG); pin = PCI_INTERRUPT_PIN(data); if (pin == 0) { /* No IRQ used. */ return NULL; } if (pin > 4) { if (_pciverbose >= 1) { _pci_tagprintf (tag, "_pci_map_int: bad interrupt pin %d\r\n", pin); } return(NULL); } _pci_break_tag (tag, &bus, &device, NULL); if (bus != 0 || device > 5) { return(NULL); } /* XXX need to work this out based on device number etc. */ _pci_tagprintf(tag, "_pci_map_int: attempt to map device %d pin %c\n", device, '@' + pin); return(NULL);}voidpci_sync_cache(p, adr, size, rw) void *p; vm_offset_t adr; size_t size; int rw;{ CPU_IOFlushDCache(adr, size, rw);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -