📄 aes.c
字号:
/* This is an implentation of the RIJNDAEL cryptosystem.
* for 128 bit plaintext block.
* This programme only gives the instance of 128 bit key.
* You can modify a little details to meet you need for 192
* or 256 bit key input
*/
#include <stdio.h>
#include <time.h>
typedef unsigned char u1byte; /* an 8 bit unsigned character type */
typedef unsigned long u4byte; /* a 32 bit unsigned integer type */
#define LARGE_TABLES
u1byte pow_tab[256];
u1byte log_tab[256];
u1byte sbx_tab[256];
u1byte isb_tab[256];
u4byte rco_tab[10];
u4byte ft_tab[4][256];
u4byte it_tab[4][256];
#ifdef LARGE_TABLES
u4byte fl_tab[4][256];
u4byte il_tab[4][256];
#endif
u4byte tab_gen = 0;
u4byte k_len;
u4byte e_key[64]; /* e_key[60]; */
u4byte d_key[64]; /* d_key[60]; */
#define ff_mult(a, b) (a && b ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
#define byte(x, n) ((u1byte)((x) >> (8 * n)))
#define f_rn(bo, bi, n, k) \
bo[n] = ft_tab[0][byte(bi[n], 0)] ^ \
ft_tab[1][byte(bi[(n + 1) & 3], 1)] ^ \
ft_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
ft_tab[3][byte(bi[(n + 3) & 3], 3)] ^ * (k + n)
#define i_rn(bo, bi, n, k) \
bo[n] = it_tab[0][byte(bi[n], 0)] ^ \
it_tab[1][byte(bi[(n + 3) & 3], 1)] ^ \
it_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
it_tab[3][byte(bi[(n + 1) & 3], 3)] ^ * (k + n)
#define rotr(x, n) (((x) >> ((int)(n))) | ((x) << (32 - (int)(n))))
#define rotl(x, n) (((x) << ((int)(n))) | ((x) >> (32 - (int)(n))))
#ifdef LARGE_TABLES
#define ls_box(x) \
( fl_tab[0][byte(x, 0)] ^ \
fl_tab[1][byte(x, 1)] ^ \
fl_tab[2][byte(x, 2)] ^ \
fl_tab[3][byte(x, 3)] )
#define f_rl(bo, bi, n, k) \
bo[n] = fl_tab[0][byte(bi[n], 0)] ^ \
fl_tab[1][byte(bi[(n + 1) & 3], 1)] ^ \
fl_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
fl_tab[3][byte(bi[(n + 3) & 3], 3)] ^ * (k + n)
#define i_rl(bo, bi, n, k) \
bo[n] = il_tab[0][byte(bi[n], 0)] ^ \
il_tab[1][byte(bi[(n + 3) & 3], 1)] ^ \
il_tab[2][byte(bi[(n + 2) & 3], 2)] ^ \
il_tab[3][byte(bi[(n + 1) & 3], 3)] ^ * (k + n)
#else
#define ls_box(x) \
( ((u4byte)sbx_tab[byte(x, 0)] << 0) ^ \
((u4byte)sbx_tab[byte(x, 1)] << 8) ^ \
((u4byte)sbx_tab[byte(x, 2)] << 16) ^ \
((u4byte)sbx_tab[byte(x, 3)] << 24) )
#define f_rl(bo, bi, n, k) \
bo[n] = (u4byte)sbx_tab[byte(bi[n], 0)] ^ \
rotl(((u4byte)sbx_tab[byte(bi[(n + 1) & 3], 1)]), 8) ^ \
rotl(((u4byte)sbx_tab[byte(bi[(n + 2) & 3], 2)]), 16) ^ \
rotl(((u4byte)sbx_tab[byte(bi[(n + 3) & 3], 3)]), 24) ^ *(k + n)
#define i_rl(bo, bi, n, k) \
bo[n] = (u4byte)isb_tab[byte(bi[n], 0)] ^ \
rotl(((u4byte)isb_tab[byte(bi[(n + 3) & 3], 1)]), 8) ^ \
rotl(((u4byte)isb_tab[byte(bi[(n + 2) & 3], 2)]), 16) ^ \
rotl(((u4byte)isb_tab[byte(bi[(n + 1) & 3], 3)]), 24) ^ *(k + n)
#endif
void gen_tabs(void);
void set_key(const u4byte in_key[], const u4byte key_len);
void encrypt(const u4byte in_blk[4], u4byte out_blk[4]);
void decrypt(const u4byte in_blk[4], u4byte out_blk[4]);
void gen_tabs(void)
{
u4byte i, t;
u1byte p, q;
/* log and power table for GF(2**8) finite field with */
/* 0x11b as modular polynomial - the simplest primitive */
/* root is 0x11b, used here to generate the tables */
for(i=0, p=1; i<256; ++i)
{
pow_tab[i] = (u1byte)p;
log_tab[p] = (u1byte)i;
p = p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0);
}
log_tab[1] = 0;
p = 1;
for(i=0; i<10; ++i)
{
rco_tab[i] = p;
p = (p << 1) ^ (p & 0x80 ? 0x1b : 0);
}
/* note that the affine byte transformation matrix in */
/* rijndael specification is in big endian format with */
/* bit 0 as the most significant bit. In the remainder */
/* of the specification the bits are numbered form the */
/* least significant end of a byte */
for(i=0; i<256; ++i)
{
p = (i ? pow_tab[255 - log_tab[i]] : 0);
q = p;
q= (q >> 7) | (q << 1); p ^= q;
q= (q >> 7) | (q << 1); p ^= q;
q= (q >> 7) | (q << 1); p ^= q;
q= (q >> 7) | (q << 1); p ^= q ^ 0x63;
sbx_tab[i] = (u1byte)p; isb_tab[p] = (u1byte)i;
}
for(i=0; i<256; ++i)
{
p = sbx_tab[i];
#ifdef LARGE_TABLES
t = p; fl_tab[0][i] = t;
fl_tab[1][i] = rotl(t, 8);
fl_tab[2][i] = rotl(t, 16);
fl_tab[3][i] = rotl(t, 24);
#endif
t = ((u4byte)ff_mult(2, p)) |
((u4byte)p << 8) |
((u4byte)p << 16) |
((u4byte)ff_mult(3, p) << 24);
ft_tab[0][i] = t;
ft_tab[1][i] = rotl(t, 8);;
ft_tab[2][i] = rotl(t, 16);;
ft_tab[3][i] = rotl(t, 24);;
p = isb_tab[i];
#ifdef LARGE_TABLES
t = p; il_tab[0][i] = t;
il_tab[1][i] = rotl(t, 8);
il_tab[2][i] = rotl(t, 16);
il_tab[3][i] = rotl(t, 24);
#endif
t = ((u4byte)ff_mult(14, p)) |
((u4byte)ff_mult(9, p) << 8) |
((u4byte)ff_mult(13, p) << 16) |
((u4byte)ff_mult(11, p) << 24);
it_tab[0][i] = t;
it_tab[1][i] = rotl(t, 8);;
it_tab[2][i] = rotl(t, 16);;
it_tab[3][i] = rotl(t, 24);;
}
tab_gen = 1;
}
#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
#define imix_col(y, x) \
u = star_x(x); \
v = star_x(u); \
w = star_x(v); \
t = w ^ (x); \
(y) = u ^ v ^ w; \
(y) ^= rotr(u ^ t, 8) ^ \
rotr(v ^ t, 16) ^ \
rotr(t, 24)
/* initialize the key schedule from the user supplied key */
#define loop4(i) \
{ \
t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
t ^= e_key[4 * i]; e_key[4 * i + 4] = t; \
t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t; \
t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t; \
t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t; \
}
#define loop6(i) \
{ \
t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
t ^= e_key[6 * i]; e_key[6 * i + 6] = t; \
t ^= e_key[6 * i + 1]; e_key[6 * i + 7] = t; \
t ^= e_key[6 * i + 2]; e_key[6 * i + 8] = t; \
t ^= e_key[6 * i + 3]; e_key[6 * i + 9] = t; \
t ^= e_key[6 * i + 4]; e_key[6 * i + 10] = t; \
t ^= e_key[6 * i + 5]; e_key[6 * i + 11] = t; \
}
#define loop8(i) \
{ \
t = ls_box(rotr(t, 8)) ^ rco_tab[i]; \
t ^= e_key[8 * i]; e_key[8 * i + 8] = t; \
t ^= e_key[8 * i + 1]; e_key[8 * i + 9] = t; \
t ^= e_key[8 * i + 2]; e_key[8 * i + 10] = t; \
t ^= e_key[8 * i + 3]; e_key[8 * i + 11] = t; \
t ^= e_key[8 * i + 4] ^ ls_box(t); \
e_key[8 * i + 12] = t; \
t ^= e_key[8 * i + 5]; e_key[8 * i + 13] = t; \
t ^= e_key[8 * i + 6]; e_key[8 * i + 14] = t; \
t ^= e_key[8 * i + 7]; e_key[8 * i + 15] = t; \
}
void set_key(const u4byte in_key[], const u4byte key_len)
{
u4byte i, t, u, v, w;
if(!tab_gen)
gen_tabs();
k_len = (key_len + 31) / 32;
e_key[0] = in_key[0];
e_key[1] = in_key[1];
e_key[2] = in_key[2];
e_key[3] = in_key[3];
switch(k_len)
{
case 4:
t = e_key[3];
for(i=0; i<10; ++i)
loop4(i);
break;
case 6:
e_key[4] = in_key[4];
t = e_key[5] = in_key[5];
for(i=0; i<8; ++i)
loop6(i);
break;
case 8:
e_key[4] = in_key[4];
e_key[5] = in_key[5];
e_key[6] = in_key[6];
t = e_key[7] = in_key[7];
for(i=0; i<7; ++i)
loop8(i);
break;
}
d_key[0] = e_key[0];
d_key[1] = e_key[1];
d_key[2] = e_key[2];
d_key[3] = e_key[3];
for(i=4; i<4*k_len+24; ++i)
{
imix_col(d_key[i], e_key[i]);
}
}
/* encrypt a block of text */
#define f_nround(bo, bi, k) \
f_rn(bo, bi, 0, k); \
f_rn(bo, bi, 1, k); \
f_rn(bo, bi, 2, k); \
f_rn(bo, bi, 3, k); \
k += 4
#define f_lround(bo, bi, k) \
f_rl(bo, bi, 0, k); \
f_rl(bo, bi, 1, k); \
f_rl(bo, bi, 2, k); \
f_rl(bo, bi, 3, k)
void encrypt(const u4byte in_blk[4], u4byte out_blk[4])
{
u4byte b0[4], b1[4], *kp;
b0[0] = in_blk[0] ^ e_key[0];
b0[1] = in_blk[1] ^ e_key[1];
b0[2] = in_blk[2] ^ e_key[2];
b0[3] = in_blk[3] ^ e_key[3];
kp = e_key + 4;
if(k_len > 6)
{
f_nround(b1, b0, kp); f_nround(b0, b1, kp);
}
if(k_len > 4)
{
f_nround(b1, b0, kp); f_nround(b0, b1, kp);
}
f_nround(b1, b0, kp); f_nround(b0, b1, kp);
f_nround(b1, b0, kp); f_nround(b0, b1, kp);
f_nround(b1, b0, kp); f_nround(b0, b1, kp);
f_nround(b1, b0, kp); f_nround(b0, b1, kp);
f_nround(b1, b0, kp); f_lround(b0, b1, kp);
out_blk[0] = b0[0]; out_blk[1] = b0[1];
out_blk[2] = b0[2]; out_blk[3] = b0[3];
}
/* decrypt a block of text */
#define i_nround(bo, bi, k) \
i_rn(bo, bi, 0, k); \
i_rn(bo, bi, 1, k); \
i_rn(bo, bi, 2, k); \
i_rn(bo, bi, 3, k); \
k -= 4
#define i_lround(bo, bi, k) \
i_rl(bo, bi, 0, k); \
i_rl(bo, bi, 1, k); \
i_rl(bo, bi, 2, k); \
i_rl(bo, bi, 3, k)
void decrypt(const u4byte in_blk[4], u4byte out_blk[4])
{
u4byte b0[4], b1[4], *kp;
b0[0] = in_blk[0] ^ e_key[4* k_len + 24];
b0[1] = in_blk[1] ^ e_key[4* k_len + 25];
b0[2] = in_blk[2] ^ e_key[4* k_len + 26];
b0[3] = in_blk[3] ^ e_key[4* k_len + 27];
kp = d_key + 4 * (k_len + 5);
if(k_len > 6)
{
i_nround(b1, b0, kp); i_nround(b0, b1, kp);
}
if(k_len > 4)
{
i_nround(b1, b0, kp); i_nround(b0, b1, kp);
}
i_nround(b1, b0, kp); i_nround(b0, b1, kp);
i_nround(b1, b0, kp); i_nround(b0, b1, kp);
i_nround(b1, b0, kp); i_nround(b0, b1, kp);
i_nround(b1, b0, kp); i_nround(b0, b1, kp);
i_nround(b1, b0, kp); i_lround(b0, b1, kp);
out_blk[0] = b0[0]; out_blk[1] = b0[1];
out_blk[2] = b0[2]; out_blk[3] = b0[3];
}
/* use data to test programme */
void main()
{
int i;
u4byte out_block[4];
//const u4byte in_key[4] ={0x11111111, 0x22222222, 0x33333333, 0x44444444};
//const u4byte plain_block[4] ={0x12121212, 0x34343434, 0x45454545, 0x56565656};
//const u4byte cipher_block[4] ={0x844050f7, 0xe346a4ff, 0x375104da, 0xabb97f8b};
//const u4byte in_key[8] ={0x11111111, 0x22222222, 0x33333333, 0x44444444,
// 0x55555555, 0x66666666, 0x77777777, 0x88888888};
//const u4byte plain_block[8] ={0x12121212, 0x34343434, 0x45454545, 0x56565656,
// 0x67676767, 0x78787878, 0x89898989, 0x9a9a9a9a};
//const u4byte cipher_block[8] ={0x844050f7, 0xe346a4ff, 0x375104da, 0xabb97f8b,
// 0x844050f7, 0xe346a4ff, 0x375104da, 0xabb97f8b};
const u4byte in_key[4] ={0x2b7e1516, 0x28aed2a6, 0xabf71588, 0x09cf4f3c};
const u4byte plain_block[4] ={0x3243f6a8, 0x885a308d, 0x313198a2, 0xe0370734};
const u4byte cipher_block[4] ={0x3925841d, 0x02dc09fb, 0xdc118597, 0x196a0b32};
time_t t;
long j;
printf("\n----------------------------------------------\n");
printf("in_key:\n");
for(i=0; i<4; i++)
printf("%8lx ", in_key[i]);
printf("\nplain_block:\n");
for(i=0; i<4; i++)
printf("%8lx ", plain_block[i]);
printf("\ncipher_block:\n");
for(i=0; i<4; i++)
printf("%8lx ", cipher_block[i]);
set_key(in_key, 256);
t = time(NULL);
printf("\nThe number of seconds since January 1, 1970 is %ld\n",t);
printf("\nEncryptions/Decryptions: 1 ~ 500000 times\n");
for(j=0; j<500000l; j++)
{
encrypt(plain_block, out_block);
//printf("\nEncryptions:\n");
//for(i=0; i<4; i++)
// printf("%8lx ", out_block[i]);
//decrypt(cipher_block, out_block);
decrypt(out_block, out_block);
//printf("\nDecryptions:\n");
//for(i=0; i<4; i++)
// printf("%8lx ", out_block[i]);
}
t = time(NULL);
printf("\nThe number of seconds since January 1, 1970 is %ld\n",t);
//return(0);
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -