⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 spcollec.h

📁 TTS语音开发示例
💻 H
📖 第 1 页 / 共 3 页
字号:
/*****************************************************************************
* SPCollec.h *
*------------*
*       This header file contains the SAPI5 collection class templates. These
*   are a modified version of the MFC template classes without the dependencies.
*-----------------------------------------------------------------------------
*   Copyright (c) Microsoft Corporation. All rights reserved.
*****************************************************************************/
#ifndef SPCollec_h
#define SPCollec_h

#ifndef _INC_LIMITS
#include <limits.h>
#endif

#ifndef _INC_STRING
#include <string.h>
#endif

#ifndef _INC_STDLIB
#include <stdlib.h>
#endif

#ifndef _WIN32_WCE
#ifndef _INC_SEARCH
#include <search.h>
#endif
#endif

/////////////////////////////////////////////////////////////////////////////
#define SPASSERT_VALID( a )             // This doesn't do anything right now

typedef void* SPLISTPOS;
typedef DWORD SPLISTHANDLE;

#define SP_BEFORE_START_POSITION ((void*)-1L)

inline BOOL SPIsValidAddress(const void* lp, UINT nBytes, BOOL bReadWrite)
{
    // simple version using Win-32 APIs for pointer validation.
    return (lp != NULL && !IsBadReadPtr(lp, nBytes) &&
        (!bReadWrite || !IsBadWritePtr((LPVOID)lp, nBytes)));
}

/////////////////////////////////////////////////////////////////////////////
// global helpers (can be overridden)
template<class TYPE>
inline HRESULT SPConstructElements(TYPE* pElements, int nCount)
{
    HRESULT hr = S_OK;
    SPDBG_ASSERT( nCount == 0 ||
             SPIsValidAddress( pElements, nCount * sizeof(TYPE), TRUE ) );

    // default is bit-wise zero initialization
    memset((void*)pElements, 0, nCount * sizeof(TYPE));
    return hr;
}

template<class TYPE>
inline void SPDestructElements(TYPE* pElements, int nCount)
{
    SPDBG_ASSERT( ( nCount == 0 ||
               SPIsValidAddress( pElements, nCount * sizeof(TYPE), TRUE  ) ) );
    pElements;  // not used
    nCount; // not used

    // default does nothing
}

template<class TYPE>
inline HRESULT SPCopyElements(TYPE* pDest, const TYPE* pSrc, int nCount)
{
    HRESULT hr = S_OK;
    SPDBG_ASSERT( ( nCount == 0 ||
               SPIsValidAddress( pDest, nCount * sizeof(TYPE), TRUE  )) );
    SPDBG_ASSERT( ( nCount == 0 ||
               SPIsValidAddress( pSrc, nCount * sizeof(TYPE), FALSE  )) );

    // default is bit-wise copy
    memcpy(pDest, pSrc, nCount * sizeof(TYPE));
    return hr;
}

template<class TYPE, class ARG_TYPE>
BOOL SPCompareElements(const TYPE* pElement1, const ARG_TYPE* pElement2)
{
    SPDBG_ASSERT( SPIsValidAddress( pElement1, sizeof(TYPE), FALSE ) );
    SPDBG_ASSERT( SPIsValidAddress( pElement2, sizeof(ARG_TYPE), FALSE ) );
    return *pElement1 == *pElement2;
}

template<class ARG_KEY>
inline UINT SPHashKey(ARG_KEY key)
{
    // default identity hash - works for most primitive values
    return ((UINT)(void*)(DWORD)key) >> 4;
}

/////////////////////////////////////////////////////////////////////////////
// CSPPlex

struct CSPPlex    // warning variable length structure
{
    CSPPlex* pNext;
    UINT nMax;
    UINT nCur;
    /* BYTE data[maxNum*elementSize]; */
    void* data() { return this+1; }

    static CSPPlex* PASCAL Create( CSPPlex*& pHead, UINT nMax, UINT cbElement )
    {
        CSPPlex* p = (CSPPlex*) new BYTE[sizeof(CSPPlex) + nMax * cbElement];
        SPDBG_ASSERT(p);
        p->nMax = nMax;
        p->nCur = 0;
        p->pNext = pHead;
        pHead = p;  // change head (adds in reverse order for simplicity)
        return p;
    }

    void FreeDataChain()
    {
        CSPPlex* p = this;
        while (p != NULL)
        {
            BYTE* bytes = (BYTE*) p;
            CSPPlex* pNext = p->pNext;
            delete[] bytes;
            p = pNext;
        }
    }
};


/////////////////////////////////////////////////////////////////////////////
// CSPArray<TYPE, ARG_TYPE>

template<class TYPE, class ARG_TYPE>
class CSPArray
{
public:
// Construction
    CSPArray();

// Attributes
    int GetSize() const;
    int GetUpperBound() const;
    HRESULT SetSize(int nNewSize, int nGrowBy = -1);

// Operations
    // Clean up
    void FreeExtra();
    void RemoveAll();

    // Accessing elements
    TYPE GetAt(int nIndex) const;
    void SetAt(int nIndex, ARG_TYPE newElement);
    TYPE& ElementAt(int nIndex);

    // Direct Access to the element data (may return NULL)
    const TYPE* GetData() const;
    TYPE* GetData();

    // Potentially growing the array
    HRESULT SetAtGrow(int nIndex, ARG_TYPE newElement);
    int Add(ARG_TYPE newElement);
    int Append(const CSPArray& src);
    HRESULT Copy(const CSPArray& src);

    // overloaded operator helpers
    TYPE operator[](int nIndex) const;
    TYPE& operator[](int nIndex);

    // Operations that move elements around
    HRESULT InsertAt(int nIndex, ARG_TYPE newElement, int nCount = 1);
    void    RemoveAt(int nIndex, int nCount = 1);
    HRESULT InsertAt(int nStartIndex, CSPArray* pNewArray);
    void    Sort(int (__cdecl *compare )(const void *elem1, const void *elem2 ));

// Implementation
protected:
    TYPE* m_pData;   // the actual array of data
    int m_nSize;     // # of elements (upperBound - 1)
    int m_nMaxSize;  // max allocated
    int m_nGrowBy;   // grow amount

public:
    ~CSPArray();
#ifdef _DEBUG
//  void Dump(CDumpContext&) const;
    void AssertValid() const;
#endif
};

/////////////////////////////////////////////////////////////////////////////
// CSPArray<TYPE, ARG_TYPE> inline functions

template<class TYPE, class ARG_TYPE>
inline int CSPArray<TYPE, ARG_TYPE>::GetSize() const
    { return m_nSize; }
template<class TYPE, class ARG_TYPE>
inline int CSPArray<TYPE, ARG_TYPE>::GetUpperBound() const
    { return m_nSize-1; }
template<class TYPE, class ARG_TYPE>
inline void CSPArray<TYPE, ARG_TYPE>::RemoveAll()
    { SetSize(0, -1); }
template<class TYPE, class ARG_TYPE>
inline TYPE CSPArray<TYPE, ARG_TYPE>::GetAt(int nIndex) const
    { SPDBG_ASSERT( (nIndex >= 0 && nIndex < m_nSize) );
        return m_pData[nIndex]; }
template<class TYPE, class ARG_TYPE>
inline void CSPArray<TYPE, ARG_TYPE>::SetAt(int nIndex, ARG_TYPE newElement)
    { SPDBG_ASSERT( (nIndex >= 0 && nIndex < m_nSize) );
        m_pData[nIndex] = newElement; }
template<class TYPE, class ARG_TYPE>
inline TYPE& CSPArray<TYPE, ARG_TYPE>::ElementAt(int nIndex)
    { SPDBG_ASSERT( (nIndex >= 0 && nIndex < m_nSize) );
        return m_pData[nIndex]; }
template<class TYPE, class ARG_TYPE>
inline const TYPE* CSPArray<TYPE, ARG_TYPE>::GetData() const
    { return (const TYPE*)m_pData; }
template<class TYPE, class ARG_TYPE>
inline TYPE* CSPArray<TYPE, ARG_TYPE>::GetData()
    { return (TYPE*)m_pData; }
template<class TYPE, class ARG_TYPE>
inline int CSPArray<TYPE, ARG_TYPE>::Add(ARG_TYPE newElement)
    { int nIndex = m_nSize;
        SetAtGrow(nIndex, newElement);
        return nIndex; }
template<class TYPE, class ARG_TYPE>
inline TYPE CSPArray<TYPE, ARG_TYPE>::operator[](int nIndex) const
    { return GetAt(nIndex); }
template<class TYPE, class ARG_TYPE>
inline TYPE& CSPArray<TYPE, ARG_TYPE>::operator[](int nIndex)
    { return ElementAt(nIndex); }

/////////////////////////////////////////////////////////////////////////////
// CSPArray<TYPE, ARG_TYPE> out-of-line functions

template<class TYPE, class ARG_TYPE>
CSPArray<TYPE, ARG_TYPE>::CSPArray()
{
    m_pData = NULL;
    m_nSize = m_nMaxSize = m_nGrowBy = 0;
}

template<class TYPE, class ARG_TYPE>
CSPArray<TYPE, ARG_TYPE>::~CSPArray()
{
    SPASSERT_VALID( this );

    if (m_pData != NULL)
    {
        SPDestructElements(m_pData, m_nSize);
        delete[] (BYTE*)m_pData;
    }
}

template<class TYPE, class ARG_TYPE>
HRESULT CSPArray<TYPE, ARG_TYPE>::SetSize(int nNewSize, int nGrowBy)
{
    SPASSERT_VALID( this );
    SPDBG_ASSERT( nNewSize >= 0 );
    HRESULT hr = S_OK;

    if (nGrowBy != -1)
        m_nGrowBy = nGrowBy;  // set new size

    if (nNewSize == 0)
    {
        // shrink to nothing
        if (m_pData != NULL)
        {
            SPDestructElements(m_pData, m_nSize);
            delete[] (BYTE*)m_pData;
            m_pData = NULL;
        }
        m_nSize = m_nMaxSize = 0;
    }
    else if (m_pData == NULL)
    {
        // create one with exact size
#ifdef SIZE_T_MAX
        SPDBG_ASSERT( nNewSize <= SIZE_T_MAX/sizeof(TYPE) );    // no overflow
#endif
        m_pData = (TYPE*) new BYTE[nNewSize * sizeof(TYPE)];
        if( m_pData )
        {
            hr = SPConstructElements(m_pData, nNewSize);
            if( SUCCEEDED( hr ) )
            {
                m_nSize = m_nMaxSize = nNewSize;
            }
            else
            {
                delete[] (BYTE*)m_pData;
                m_pData = NULL;
            }
        }
        else
        {
            hr = E_OUTOFMEMORY;
        }
    }
    else if (nNewSize <= m_nMaxSize)
    {
        // it fits
        if (nNewSize > m_nSize)
        {
            // initialize the new elements
            hr = SPConstructElements(&m_pData[m_nSize], nNewSize-m_nSize);
        }
        else if (m_nSize > nNewSize)
        {
            // destroy the old elements
            SPDestructElements(&m_pData[nNewSize], m_nSize-nNewSize);
        }

        if( SUCCEEDED( hr ) )
        {
            m_nSize = nNewSize;
        }
    }
    else
    {
        // otherwise, grow array
        int nGrowBy = m_nGrowBy;
        if (nGrowBy == 0)
        {
            // heuristically determe growth when nGrowBy == 0
            //  (this avoids heap fragmentation in many situations)
            nGrowBy = min(1024, max(4, m_nSize / 8));
        }
        int nNewMax;
        if (nNewSize < m_nMaxSize + nGrowBy)
            nNewMax = m_nMaxSize + nGrowBy;  // granularity
        else
            nNewMax = nNewSize;  // no slush

        SPDBG_ASSERT( nNewMax >= m_nMaxSize );  // no wrap around
#ifdef SIZE_T_MAX
        SPDBG_ASSERT( nNewMax <= SIZE_T_MAX/sizeof(TYPE) ); // no overflow
#endif
        TYPE* pNewData = (TYPE*) new BYTE[nNewMax * sizeof(TYPE)];

        if( pNewData )
        {
            // copy new data from old
            memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE));

            // construct remaining elements
            SPDBG_ASSERT( nNewSize > m_nSize );
            hr = SPConstructElements(&pNewData[m_nSize], nNewSize-m_nSize);

            // get rid of old stuff (note: no destructors called)
            delete[] (BYTE*)m_pData;
            m_pData = pNewData;
            m_nSize = nNewSize;
            m_nMaxSize = nNewMax;
        }
        else
        {
            hr = E_OUTOFMEMORY;
        }
    }
    return hr;
}

template<class TYPE, class ARG_TYPE>
int CSPArray<TYPE, ARG_TYPE>::Append(const CSPArray& src)
{
    SPASSERT_VALID( this );
    SPDBG_ASSERT( this != &src );   // cannot append to itself

    int nOldSize = m_nSize;
    HRESULT hr = SetSize(m_nSize + src.m_nSize);
    if( SUCCEEDED( hr ) )
    {
        hr = SPCopyElements(m_pData + nOldSize, src.m_pData, src.m_nSize);
    }
    return ( SUCCEEDED( hr ) )?(nOldSize):(-1);
}

template<class TYPE, class ARG_TYPE>
HRESULT CSPArray<TYPE, ARG_TYPE>::Copy(const CSPArray& src)
{
    SPASSERT_VALID( this );
    SPDBG_ASSERT( this != &src );   // cannot copy to itself

    HRESULT hr = SetSize(src.m_nSize);
    if( SUCCEEDED( hr ) )
    {
        hr = SPCopyElements(m_pData, src.m_pData, src.m_nSize);
    }
    return hr;
}

template<class TYPE, class ARG_TYPE>
void CSPArray<TYPE, ARG_TYPE>::FreeExtra()
{
    SPASSERT_VALID( this );

    if (m_nSize != m_nMaxSize)
    {
        // shrink to desired size
#ifdef SIZE_T_MAX
        SPDBG_ASSERT( m_nSize <= SIZE_T_MAX/sizeof(TYPE)); // no overflow
#endif
        TYPE* pNewData = NULL;
        if (m_nSize != 0)
        {
            pNewData = (TYPE*) new BYTE[m_nSize * sizeof(TYPE)];
            SPDBG_ASSERT(pNewData);
            // copy new data from old
            memcpy(pNewData, m_pData, m_nSize * sizeof(TYPE));
        }

        // get rid of old stuff (note: no destructors called)
        delete[] (BYTE*)m_pData;
        m_pData = pNewData;
        m_nMaxSize = m_nSize;
    }
}

template<class TYPE, class ARG_TYPE>
HRESULT CSPArray<TYPE, ARG_TYPE>::SetAtGrow(int nIndex, ARG_TYPE newElement)
{
    SPASSERT_VALID( this );
    SPDBG_ASSERT( nIndex >= 0 );
    HRESULT hr = S_OK;

    if (nIndex >= m_nSize)
    {
        hr = SetSize(nIndex+1, -1);
    }

    if( SUCCEEDED( hr ) )
    {
        m_pData[nIndex] = newElement;
    }
    return hr;
}

template<class TYPE, class ARG_TYPE>
HRESULT CSPArray<TYPE, ARG_TYPE>::InsertAt(int nIndex, ARG_TYPE newElement, int nCount /*=1*/)
{
    SPASSERT_VALID( this );
    SPDBG_ASSERT( nIndex >= 0 );    // will expand to meet need
    SPDBG_ASSERT( nCount > 0 );     // zero or negative size not allowed
    HRESULT hr = S_OK;

    if (nIndex >= m_nSize)
    {
        // adding after the end of the array
        hr = SetSize(nIndex + nCount, -1);   // grow so nIndex is valid
    }
    else
    {
        // inserting in the middle of the array
        int nOldSize = m_nSize;
        hr = SetSize(m_nSize + nCount, -1);  // grow it to new size
        if( SUCCEEDED( hr ) )
        {
            // shift old data up to fill gap
            memmove(&m_pData[nIndex+nCount], &m_pData[nIndex],
                (nOldSize-nIndex) * sizeof(TYPE));

            // re-init slots we copied from
            hr = SPConstructElements(&m_pData[nIndex], nCount);
        }
    }

    // insert new value in the gap
    if( SUCCEEDED( hr ) )
    {
        SPDBG_ASSERT( nIndex + nCount <= m_nSize );
        while (nCount--)
            m_pData[nIndex++] = newElement;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -