⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lb1spc.asm

📁 这是leon3处理器的交叉编译链
💻 ASM
📖 第 1 页 / 共 2 页
字号:
/* This is an assembly language implementation of mulsi3, divsi3, and modsi3   for the sparc processor.   These routines are derived from the SPARC Architecture Manual, version 8,   slightly edited to match the desired calling convention, and also to   optimize them for our purposes.  */#ifdef L_mulsi3.text	.align 4	.global .umul	.proc 4.umul:	or	%o0, %o1, %o4	! logical or of multiplier and multiplicand	mov	%o0, %y		! multiplier to Y register	andncc	%o4, 0xfff, %o5	! mask out lower 12 bits	be	mul_shortway	! can do it the short way	andcc	%g0, %g0, %o4	! zero the partial product and clear NV cc	!	! long multiply	!	mulscc	%o4, %o1, %o4	! first iteration of 33	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	! 32nd iteration	mulscc	%o4, %g0, %o4	! last iteration only shifts	! the upper 32 bits of product are wrong, but we do not care	retl	rd	%y, %o0	!	! short multiply	!mul_shortway:	mulscc	%o4, %o1, %o4	! first iteration of 13	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	mulscc	%o4, %o1, %o4	! 12th iteration	mulscc	%o4, %g0, %o4	! last iteration only shifts	rd	%y, %o5	sll	%o4, 12, %o4	! left shift partial product by 12 bits	srl	%o5, 20, %o5	! right shift partial product by 20 bits	retl	or	%o5, %o4, %o0	! merge for true product#endif#ifdef L_divsi3/* * Division and remainder, from Appendix E of the SPARC Version 8 * Architecture Manual, with fixes from Gordon Irlam. *//* * Input: dividend and divisor in %o0 and %o1 respectively. * * m4 parameters: *  .div	name of function to generate *  div		div=div => %o0 / %o1; div=rem => %o0 % %o1 *  true		true=true => signed; true=false => unsigned * * Algorithm parameters: *  N		how many bits per iteration we try to get (4) *  WORDSIZE	total number of bits (32) * * Derived constants: *  TOPBITS	number of bits in the top decade of a number * * Important variables: *  Q		the partial quotient under development (initially 0) *  R		the remainder so far, initially the dividend *  ITER	number of main division loop iterations required; *		equal to ceil(log2(quotient) / N).  Note that this *		is the log base (2^N) of the quotient. *  V		the current comparand, initially divisor*2^(ITER*N-1) * * Cost: *  Current estimate for non-large dividend is *	ceil(log2(quotient) / N) * (10 + 7N/2) + C *  A large dividend is one greater than 2^(31-TOPBITS) and takes a *  different path, as the upper bits of the quotient must be developed *  one bit at a time. */        .global .udiv        .align 4        .proc 4        .text.udiv:         b ready_to_divide         mov 0, %g3             ! result is always positive        .global .div        .align 4        .proc 4        .text.div:	! compute sign of result; if neither is negative, no problem	orcc	%o1, %o0, %g0	! either negative?	bge	ready_to_divide	! no, go do the divide	xor	%o1, %o0, %g3	! compute sign in any case	tst	%o1	bge	1f	tst	%o0	! %o1 is definitely negative; %o0 might also be negative	bge	ready_to_divide	! if %o0 not negative...	sub	%g0, %o1, %o1	! in any case, make %o1 nonneg1:	! %o0 is negative, %o1 is nonnegative	sub	%g0, %o0, %o0	! make %o0 nonnegativeready_to_divide:	! Ready to divide.  Compute size of quotient; scale comparand.	orcc	%o1, %g0, %o5	bne	1f	mov	%o0, %o3	! Divide by zero trap.  If it returns, return 0 (about as	! wrong as possible, but that is what SunOS does...).	ta	0x2    		! ST_DIV0	retl	clr	%o01:	cmp	%o3, %o5		! if %o1 exceeds %o0, done	blu	got_result		! (and algorithm fails otherwise)	clr	%o2	sethi	%hi(1 << (32 - 4 - 1)), %g1	cmp	%o3, %g1	blu	not_really_big	clr	%o4	! Here the dividend is >= 2**(31-N) or so.  We must be careful here,	! as our usual N-at-a-shot divide step will cause overflow and havoc.	! The number of bits in the result here is N*ITER+SC, where SC <= N.	! Compute ITER in an unorthodox manner: know we need to shift V into	! the top decade: so do not even bother to compare to R.	1:		cmp	%o5, %g1		bgeu	3f		mov	1, %g2		sll	%o5, 4, %o5		b	1b		add	%o4, 1, %o4	! Now compute %g2.	2:	addcc	%o5, %o5, %o5		bcc	not_too_big		add	%g2, 1, %g2		! We get here if the %o1 overflowed while shifting.		! This means that %o3 has the high-order bit set.		! Restore %o5 and subtract from %o3.		sll	%g1, 4, %g1	! high order bit		srl	%o5, 1, %o5	! rest of %o5		add	%o5, %g1, %o5		b	do_single_div		sub	%g2, 1, %g2	not_too_big:	3:	cmp	%o5, %o3		blu	2b		nop		be	do_single_div		nop	/* NB: these are commented out in the V8-SPARC manual as well */	/* (I do not understand this) */	! %o5 > %o3: went too far: back up 1 step	!	srl	%o5, 1, %o5	!	dec	%g2	! do single-bit divide steps	!	! We have to be careful here.  We know that %o3 >= %o5, so we can do the	! first divide step without thinking.  BUT, the others are conditional,	! and are only done if %o3 >= 0.  Because both %o3 and %o5 may have the high-	! order bit set in the first step, just falling into the regular	! division loop will mess up the first time around.	! So we unroll slightly...	do_single_div:		subcc	%g2, 1, %g2		bl	end_regular_divide		nop		sub	%o3, %o5, %o3		mov	1, %o2		b	end_single_divloop		nop	single_divloop:		sll	%o2, 1, %o2		bl	1f		srl	%o5, 1, %o5		! %o3 >= 0		sub	%o3, %o5, %o3		b	2f		add	%o2, 1, %o2	1:	! %o3 < 0		add	%o3, %o5, %o3		sub	%o2, 1, %o2	2:	end_single_divloop:		subcc	%g2, 1, %g2		bge	single_divloop		tst	%o3		b,a	end_regular_dividenot_really_big:1:	sll	%o5, 4, %o5	cmp	%o5, %o3	bleu	1b	addcc	%o4, 1, %o4	be	got_result	sub	%o4, 1, %o4	tst	%o3	! set up for initial iterationdivloop:	sll	%o2, 4, %o2	! depth 1, accumulated bits 0	bl	L1.16	srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	! depth 2, accumulated bits 1	bl	L2.17	srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	! depth 3, accumulated bits 3	bl	L3.19	srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	! depth 4, accumulated bits 7	bl	L4.23	srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	b	9f	add	%o2, (7*2+1), %o2	L4.23:	! remainder is negative	addcc	%o3,%o5,%o3	b	9f	add	%o2, (7*2-1), %o2		L3.19:	! remainder is negative	addcc	%o3,%o5,%o3	! depth 4, accumulated bits 5	bl	L4.21	srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	b	9f	add	%o2, (5*2+1), %o2	L4.21:	! remainder is negative	addcc	%o3,%o5,%o3	b	9f	add	%o2, (5*2-1), %o2	L2.17:	! remainder is negative	addcc	%o3,%o5,%o3	! depth 3, accumulated bits 1	bl	L3.17	srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	! depth 4, accumulated bits 3	bl	L4.19	srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	b	9f	add	%o2, (3*2+1), %o2	L4.19:	! remainder is negative	addcc	%o3,%o5,%o3	b	9f	add	%o2, (3*2-1), %o2L3.17:	! remainder is negative	addcc	%o3,%o5,%o3	! depth 4, accumulated bits 1	bl	L4.17	srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	b	9f	add	%o2, (1*2+1), %o2L4.17:	! remainder is negative	addcc	%o3,%o5,%o3	b	9f	add	%o2, (1*2-1), %o2	L1.16:	! remainder is negative	addcc	%o3,%o5,%o3	! depth 2, accumulated bits -1	bl	L2.15	srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	! depth 3, accumulated bits -1	bl	L3.15	srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	! depth 4, accumulated bits -1	bl	L4.15	srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	b	9f	add	%o2, (-1*2+1), %o2	L4.15:	! remainder is negative	addcc	%o3,%o5,%o3	b	9f	add	%o2, (-1*2-1), %o2	L3.15:	! remainder is negative	addcc	%o3,%o5,%o3	! depth 4, accumulated bits -3	bl	L4.13	srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	b	9f	add	%o2, (-3*2+1), %o2	L4.13:	! remainder is negative	addcc	%o3,%o5,%o3	b	9f	add	%o2, (-3*2-1), %o2	L2.15:	! remainder is negative	addcc	%o3,%o5,%o3	! depth 3, accumulated bits -3	bl	L3.13	srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3	! depth 4, accumulated bits -5	bl	L4.11	srl	%o5,1,%o5	! remainder is positive	subcc	%o3,%o5,%o3

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -