⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ico.cc

📁 大型并行量子化学软件;支持密度泛函(DFT)。可以进行各种量子化学计算。支持CHARMM并行计算。非常具有应用价值。
💻 CC
字号:
//// ico.cc --- implementation of icosahedral operations//// Copyright (C) 1996 Limit Point Systems, Inc.//// Author: Edward Seidl <seidl@janed.com>// Maintainer: LPS//// This file is part of the SC Toolkit.//// The SC Toolkit is free software; you can redistribute it and/or modify// it under the terms of the GNU Library General Public License as published by// the Free Software Foundation; either version 2, or (at your option)// any later version.//// The SC Toolkit is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU Library General Public License for more details.//// You should have received a copy of the GNU Library General Public License// along with the SC Toolkit; see the file COPYING.LIB.  If not, write to// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.//// The U.S. Government is granted a limited license as per AL 91-7.//#include <math.h>#include <string.h>#include <math/symmetry/pointgrp.h>#ifndef M_PI#define M_PI 3.14159265358979323846#endifusing namespace sc;// these are the operations which make up Tstatic voidi_ops(SymRep *t1rep, SymRep *t2rep, SymRep *grep, SymRep *hrep){  int i;    // identity  t1rep[0].E();  t2rep[0].E();  grep[0].E();  hrep[0].E();      //  // 12 C5's  //  // first the 2 C5's about the z axis  t1rep[1].rotation(2.0*(double)M_PI/5.0);  t1rep[2].rotation(8.0*(double)M_PI/5.0);    t2rep[1] = t1rep[1].operate(t1rep[1]);  t2rep[2] = t1rep[2].operate(t1rep[2]);  grep[1].rotation(2.0*(double)M_PI/5.0);  grep[2].rotation(8.0*(double)M_PI/5.0);    hrep[1].rotation(2.0*(double)M_PI/5.0);  hrep[2].rotation(8.0*(double)M_PI/5.0);     // form rotation matrices for the C3 axis about the zx axis (these were  // taken from turbomole version 2, which claims they were sort of inherited  // from hondo  SymRep t1so(3);  SymRep gso(4);  SymRep hso(5);  double c2p5 = cos(2.0*(double)M_PI/5.0);  double s2p5 = sin(2.0*(double)M_PI/5.0);  double cosd = s2p5/((1.0-c2p5)*sqrt(3.0));  double cosd2 = cosd*cosd;  double sind2 = 1.0 - cosd2;  double sind = sqrt(sind2);  t1so[0][0] =  1.0 - 1.5*cosd2;  t1so[1][0] =  0.5*sqrt(3.0)*cosd;  t1so[2][0] =  1.5*cosd*sind;  t1so[0][1] = -0.5*sqrt(3.0)*cosd;  t1so[1][1] = -0.5;  t1so[2][1] =  0.5*sqrt(3.0)*sind;  t1so[0][2] =  1.5*cosd*sind;  t1so[1][2] = -0.5*sqrt(3.0)*sind;  t1so[2][2] =  1.0 - 1.5*sind2;  gso[0][0] = (3.0*sqrt(5.0)+5.0)/20.0;  gso[0][1] = cosd*sqrt(3.0)*(sqrt(5.0)-1.0)/4.0;  gso[0][2] = 3.0*sqrt(5.0)/10.0;  gso[0][3] = -sqrt(5.0-2.0*sqrt(5.0))*sqrt(5.0)/10.0;  gso[1][0] = -gso[0][1];  gso[1][1] = (1-sqrt(5.0))/4.0;  gso[1][2] = cosd*sqrt(3.0)/2.0;  gso[1][3] = cosd*sqrt(5-2*sqrt(5.0))*sqrt(3.0)/2.0;  gso[2][0] = gso[0][2];  gso[2][1] = -gso[1][2];  gso[2][2] = (5-3*sqrt(5.0))/20.0;  gso[2][3] = sqrt(5.0-2*sqrt(5.0))*(sqrt(5.0)+5)/20;  gso[3][0] = -gso[0][3];  gso[3][1] = gso[1][3];  gso[3][2] = -gso[2][3];  gso[3][3] = (sqrt(5.0)+1)/4.0;  hso[0][0] = -1.0/5.0;  hso[0][4] = sqrt(3.0)*(sqrt(5.0)+1)/10.0;  hso[0][3] = 3.0*cosd*(3.0*sqrt(5.0)-5.0)/10.0;  hso[0][2] = 3.0*cosd*(5.0-sqrt(5.0))/10.0;  hso[0][1] = sqrt(3.0)*(sqrt(5.0)-1.0)/10.0;  hso[4][0] = hso[0][4];  hso[4][4] = (2.0*sqrt(5.0)+1.0)/10.0;  hso[4][3] = sqrt(3.0)*cosd*(5.0-2.0*sqrt(5.0))/10.0;  hso[4][2] = sqrt(3.0)*cosd*(5.0-3.0*sqrt(5.0))/5.0;  hso[4][1] = 2.0/5.0;  hso[3][0] = -hso[0][3];  hso[3][4] = -hso[4][3];  hso[3][3] = -1.0/2.0;  hso[3][2] = 0.0;  hso[3][1] = sqrt(3.0)*cosd*(5.0-sqrt(5.0))/5.0;  hso[2][0] = -hso[0][2];  hso[2][4] = -hso[4][2];  hso[2][3] = 0.0;  hso[2][2] = -1.0/2.0;  hso[2][1] = -sqrt(3.0)*sqrt(5.0)*cosd/10.0;  hso[1][0] = hso[0][1];  hso[1][4] = hso[4][1];  hso[1][3] = -hso[3][1];  hso[1][2] = -hso[2][1];  hso[1][1] = (1.0-2.0*sqrt(5.0))/10.0;    // now rotate the first C5's by 2pi/3 degrees about the zx axis (sort of)  t1rep[3] = t1rep[1].transform(t1so);  t1rep[4] = t1rep[2].transform(t1so);  grep[3] = grep[1].transform(gso);  grep[4] = grep[2].transform(gso);  hrep[3] = hrep[1].transform(hso);  hrep[4] = hrep[2].transform(hso);  // rotate twice to get the first one aligned along the x axis  t1rep[3] = t1rep[3].transform(t1rep[1]).transform(t1rep[1]);  t1rep[4] = t1rep[4].transform(t1rep[1]).transform(t1rep[1]);  grep[3] = grep[3].transform(grep[1]).transform(grep[1]);  grep[4] = grep[4].transform(grep[1]).transform(grep[1]);  hrep[3] = hrep[3].transform(hrep[1]).transform(hrep[1]);  hrep[4] = hrep[4].transform(hrep[1]).transform(hrep[1]);  t2rep[3] = t1rep[4].operate(t1rep[4]);  t2rep[4] = t1rep[3].operate(t1rep[3]);  t2rep[13] = t1rep[2];  t2rep[14] = t1rep[1];  t2rep[15] = t1rep[3];  t2rep[16] = t1rep[4];    // and then rotate those by 2pi/5 about the z axis 4 times  for (i=5; i < 13; i++) {    t1rep[i] = t1rep[i-2].transform(t1rep[1]);    grep[i] = grep[i-2].transform(grep[1]);    hrep[i] = hrep[i-2].transform(hrep[1]);    t2rep[i] = t2rep[i-2].transform(t2rep[1]);    t2rep[i+12] = t2rep[i+10].transform(t2rep[1]);  }  //  // 12 C5^2's  //  // get these from operating on each of the C5's with itself  for (i=13; i < 25; i++) {    t1rep[i] = t1rep[i-12].operate(t1rep[i-12]);    grep[i] = grep[i-12].operate(grep[i-12]);    hrep[i] = hrep[i-12].operate(hrep[i-12]);  }  //  // 20 C3's  //  // first we have 2 C3's about the zx axis  t1rep[25] = t1so;  t1rep[26] = t1so.operate(t1so);    grep[25] = gso;  grep[26] = gso.operate(gso);    hrep[25] = hso;  hrep[26] = hso.operate(hso);    // and then rotate those by 2pi/5 about the z axis 4 times  for (i=27; i < 35; i++) {    t1rep[i] = t1rep[i-2].transform(t1rep[1]);    grep[i] = grep[i-2].transform(grep[1]);    hrep[i] = hrep[i-2].transform(hrep[1]);  }  // now rotate one of the above C3's by 2pi/3 about the zx axis  t1rep[35] = t1rep[27].transform(t1so);  t1rep[36] = t1rep[28].transform(t1so);  grep[35] = grep[27].transform(gso);  grep[36] = grep[28].transform(gso);                        hrep[35] = hrep[27].transform(hso);  hrep[36] = hrep[28].transform(hso);  // and then rotate those by 2pi/5 about the z axis 4 times  for (i=37; i < 45; i++) {    t1rep[i] = t1rep[i-2].transform(t1rep[1]);    grep[i] = grep[i-2].transform(grep[1]);    hrep[i] = hrep[i-2].transform(hrep[1]);  }  t2rep[25] = t1rep[35];  t2rep[26] = t1rep[36];    for (i=27; i < 35; i++)    t2rep[i] = t2rep[i-2].transform(t2rep[1]);    t2rep[35] = t1rep[26];  t2rep[36] = t1rep[25];    for (i=37; i < 45; i++)    t2rep[i] = t2rep[i-2].transform(t2rep[1]);  //  // 15 C2's  //  // first we have a C2 about the y axis  t1rep[45][0][0] = -1.0;  t1rep[45][1][1] =  1.0;  t1rep[45][2][2] = -1.0;  t2rep[45] = t1rep[45];    grep[45][0][0] = -1.0;  grep[45][1][1] =  1.0;  grep[45][2][2] = -1.0;  grep[45][3][3] =  1.0;    hrep[45][0][0] =  1.0;  hrep[45][1][1] =  1.0;  hrep[45][2][2] = -1.0;  hrep[45][3][3] = -1.0;  hrep[45][4][4] =  1.0;    // and rotate that by 2pi/5 about the z axis 4 times  for (i=46; i < 50; i++) {    t1rep[i] = t1rep[i-1].transform(t1rep[1]);    t2rep[i] = t2rep[i-1].transform(t2rep[1]);    grep[i] = grep[i-1].transform(grep[1]);    hrep[i] = hrep[i-1].transform(hrep[1]);  }  // now take the C2 about the y axis and rotate it by 2pi/3 about the zx axis  t1rep[50] = t1rep[45].transform(t1so);  grep[50] = grep[45].transform(gso);  hrep[50] = hrep[45].transform(hso);  // align this c2 along the x axis  t1rep[50] = t1rep[50].transform(t1rep[2]).transform(t1rep[2]);  grep[50] = grep[50].transform(grep[2]).transform(grep[2]);  hrep[50] = hrep[50].transform(hrep[2]).transform(hrep[2]);  // and rotate that by 2pi/5 about the z axis 4 times  for (i=51; i < 55; i++) {    t1rep[i] = t1rep[i-1].transform(t1rep[1]);    grep[i] = grep[i-1].transform(grep[1]);    hrep[i] = hrep[i-1].transform(hrep[1]);  }  // finally, take a C2 about the y axis, and rotate it by 2pi/3 about the  // xz axis, and align it along the x axis  t1rep[55] = t1rep[45].transform(t1rep[35]).transform(t1rep[1]);  grep[55] = grep[45].transform(grep[35]).transform(grep[1]);  hrep[55] = hrep[45].transform(hrep[35]).transform(hrep[1]);  // and then rotate that by 2pi/5 about the z axis 4 times  for (i=56; i < 60; i++) {    t1rep[i] = t1rep[i-1].transform(t1rep[1]);    grep[i] = grep[i-1].transform(grep[1]);    hrep[i] = hrep[i-1].transform(hrep[1]);  }  t2rep[50] = t1rep[55];  t2rep[55] = t1rep[50];    for (i=51; i < 55; i++) {    t2rep[i] = t2rep[i-1].transform(t2rep[1]);    t2rep[i+5] = t2rep[i+4].transform(t2rep[1]);  }}voidCharacterTable::i(){  int i;  IrreducibleRepresentation& ira = gamma_[0];  IrreducibleRepresentation& ir1 = gamma_[1];  IrreducibleRepresentation& ir2 = gamma_[2];  IrreducibleRepresentation& irg = gamma_[3];  IrreducibleRepresentation& irh = gamma_[4];  ira.init(g,1,"A");  ir1.init(g,3,"T1");  ir2.init(g,3,"T2");  irg.init(g,4,"G");  irh.init(g,5,"H");  // i_ops gives us all the symmetry operations we need  i_ops(ir1.rep, ir2.rep, irg.rep, irh.rep);      ir1.nrot_ = 1;  ir1.ntrans_ = 1;  for (i=0; i < g; i++) {    ira.rep[i][0][0] = 1.0;    symop[i] = ir1.rep[i];  }}void CharacterTable::ih(){  int i;  IrreducibleRepresentation& irag = gamma_[0];  IrreducibleRepresentation& ir1g = gamma_[1];  IrreducibleRepresentation& ir2g = gamma_[2];  IrreducibleRepresentation& irgg = gamma_[3];  IrreducibleRepresentation& irhg = gamma_[4];  IrreducibleRepresentation& irau = gamma_[5];  IrreducibleRepresentation& ir1u = gamma_[6];  IrreducibleRepresentation& ir2u = gamma_[7];  IrreducibleRepresentation& irgu = gamma_[8];  IrreducibleRepresentation& irhu = gamma_[9];  irag.init(g,1,"Ag");  ir1g.init(g,3,"T1g");  ir2g.init(g,3,"T2g");  irgg.init(g,4,"Gg");  irhg.init(g,5,"Hg");  irau.init(g,1,"Au");  ir1u.init(g,3,"T1u");  ir2u.init(g,3,"T2u");  irgu.init(g,4,"Gu");  irhu.init(g,5,"Hu");  // i_ops gives us all the symmetry operations we need  i_ops(ir1g.rep, ir2g.rep, irgg.rep, irhg.rep);      ir1g.nrot_ = 1;  ir1u.ntrans_ = 1;  SymRep ti(3), gi(4), hi(5);  ti.i();  gi.i();  hi.i();    for (i=0; i < g/2; i++) {    irag.rep[i][0][0] = 1.0;    irau.rep[i][0][0] = 1.0;    irag.rep[i+60][0][0] =  1.0;    irau.rep[i+60][0][0] = -1.0;    ir1g.rep[i+60] = ir1g.rep[i];    ir2g.rep[i+60] = ir2g.rep[i];    irgg.rep[i+60] = irgg.rep[i];    irhg.rep[i+60] = irhg.rep[i];        ir1u.rep[i] = ir1g.rep[i];    ir2u.rep[i] = ir2g.rep[i];    irgu.rep[i] = irgg.rep[i];    irhu.rep[i] = irhg.rep[i];        ir1u.rep[i+60] = ir1g.rep[i].operate(ti);    ir2u.rep[i+60] = ir2g.rep[i].operate(ti);    irgu.rep[i+60] = irgg.rep[i].operate(gi);    irhu.rep[i+60] = irhg.rep[i].operate(hi);        symop[i] = ir1u.rep[i];    symop[i+60] = ir1u.rep[i+60];  }}/////////////////////////////////////////////////////////////////////////////// Local Variables:// mode: c++// c-file-style: "ETS"// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -