⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 replrect.cc

📁 大型并行量子化学软件;支持密度泛函(DFT)。可以进行各种量子化学计算。支持CHARMM并行计算。非常具有应用价值。
💻 CC
📖 第 1 页 / 共 2 页
字号:
  for (i=0; i<ni; i++) {      for (j=0; j<nj; j++) {          cd[i][j] += ad[i][j]*bd[j];        }    }}voidReplSCMatrix::accumulate(const SCMatrix*a){  // make sure that the arguments is of the correct type  const ReplSCMatrix* la    = require_dynamic_cast<const ReplSCMatrix*>(a,"ReplSCMatrix::accumulate");  // make sure that the dimensions match  if (!rowdim()->equiv(la->rowdim()) || !coldim()->equiv(la->coldim())) {      ExEnv::errn() << indent << "ReplSCMatrix::accumulate(SCMatrix*a): "           << "dimensions don't match" << endl;      abort();    }  int nelem = this->ncol() * this->nrow();  int i;  for (i=0; i<nelem; i++) matrix[i] += la->matrix[i];}voidReplSCMatrix::accumulate(const SymmSCMatrix*a){  // make sure that the arguments is of the correct type  const ReplSymmSCMatrix* la    = require_dynamic_cast<const ReplSymmSCMatrix*>(a,"ReplSCMatrix::accumulate");  // make sure that the dimensions match  if (!rowdim()->equiv(la->dim()) || !coldim()->equiv(la->dim())) {      ExEnv::errn() << indent << "ReplSCMatrix::accumulate(SymmSCMatrix*a): "           << "dimensions don't match" << endl;      abort();    }  int n = this->ncol();  double *dat = la->matrix;  int i, j;  for (i=0; i<n; i++) {      for (j=0; j<i; j++) {          double tmp = *dat;          matrix[i*n+j] += tmp;          matrix[j*n+i] += tmp;          dat++;        }      matrix[i*n+i] += *dat++;    }}voidReplSCMatrix::accumulate(const DiagSCMatrix*a){  // make sure that the arguments is of the correct type  const ReplDiagSCMatrix* la    = require_dynamic_cast<const ReplDiagSCMatrix*>(a,"ReplSCMatrix::accumulate");  // make sure that the dimensions match  if (!rowdim()->equiv(la->dim()) || !coldim()->equiv(la->dim())) {      ExEnv::errn() << indent << "ReplSCMatrix::accumulate(DiagSCMatrix*a): "           << "dimensions don't match" << endl;      abort();    }  int n = this->ncol();  double *dat = la->matrix;  int i;  for (i=0; i<n; i++) {      matrix[i*n+i] += *dat++;    }}voidReplSCMatrix::accumulate(const SCVector*a){  // make sure that the arguments is of the correct type  const ReplSCVector* la    = require_dynamic_cast<const ReplSCVector*>(a,"ReplSCVector::accumulate");  // make sure that the dimensions match  if (!((rowdim()->equiv(la->dim()) && coldim()->n() == 1)        || (coldim()->equiv(la->dim()) && rowdim()->n() == 1))) {      ExEnv::errn() << indent << "ReplSCMatrix::accumulate(SCVector*a): "           << "dimensions don't match" << endl;      abort();    }  int n = this->ncol();  int i;  double *dat = la->vector;  for (i=0; i<n; i++) {      matrix[i*n+i] += dat[i];    }}voidReplSCMatrix::transpose_this(){  cmat_transpose_matrix(rows,nrow(),ncol());  delete[] rows;  rows = new double*[ncol()];  cmat_matrix_pointers(rows,matrix,ncol(),nrow());  RefSCDimension tmp = d1;  d1 = d2;  d2 = tmp;  init_blocklist();}doubleReplSCMatrix::invert_this(){  if (nrow() != ncol()) {      ExEnv::errn() << indent << "ReplSCMatrix::invert_this: matrix is not square" << endl;      abort();    }  return cmat_invert(rows,0,nrow());}doubleReplSCMatrix::determ_this(){  if (nrow() != ncol()) {    ExEnv::errn() << indent << "ReplSCMatrix::determ_this: matrix is not square" << endl;    abort();  }  return cmat_determ(rows,0,nrow());}doubleReplSCMatrix::trace(){  if (nrow() != ncol()) {    ExEnv::errn() << indent << "ReplSCMatrix::trace: matrix is not square" << endl;    abort();  }  double ret=0;  int i;  for (i=0; i < nrow(); i++)    ret += rows[i][i];  return ret;}voidReplSCMatrix::svd_this(SCMatrix *U, DiagSCMatrix *sigma, SCMatrix *V){  ReplSCMatrix* lU =    require_dynamic_cast<ReplSCMatrix*>(U,"ReplSCMatrix::svd_this");  ReplSCMatrix* lV =    require_dynamic_cast<ReplSCMatrix*>(V,"ReplSCMatrix::svd_this");  ReplDiagSCMatrix* lsigma =    require_dynamic_cast<ReplDiagSCMatrix*>(sigma,"ReplSCMatrix::svd_this");  RefSCDimension mdim = rowdim();  RefSCDimension ndim = coldim();  int m = mdim.n();  int n = ndim.n();  RefSCDimension pdim;  if (m == n && m == sigma->dim().n())    pdim = sigma->dim();  else if (m<n)    pdim = mdim;  else    pdim = ndim;  int p = pdim.n();  if (!mdim->equiv(lU->rowdim()) ||      !mdim->equiv(lU->coldim()) ||      !ndim->equiv(lV->rowdim()) ||      !ndim->equiv(lV->coldim()) ||      !pdim->equiv(sigma->dim())) {      ExEnv::errn() << indent << "ReplSCMatrix: svd_this: dimension mismatch" << endl;      abort();    }  // form a fortran style matrix for the SVD routines  double *dA = new double[m*n];  double *dU = new double[m*m];  double *dV = new double[n*n];  double *dsigma = new double[n];  double *w = new double[(3*p-1>m)?(3*p-1):m];  int i,j;  for (i=0; i<m; i++) {      for (j=0; j<n; j++) {          dA[i + j*m] = this->rows[i][j];        }    }  int three = 3;  sing_(dU, &m, &three, dsigma, dV, &n, &three, dA, &m, &m, &n, w);  for (i=0; i<m; i++) {      for (j=0; j<m; j++) {          lU->rows[i][j] = dU[i + j*m];        }    }  for (i=0; i<n; i++) {      for (j=0; j<n; j++) {          lV->rows[i][j] = dV[i + j*n];        }    }  for (i=0; i<p; i++) {      lsigma->matrix[i] = dsigma[i];    }  delete[] dA;  delete[] dU;  delete[] dV;  delete[] dsigma;  delete[] w;}doubleReplSCMatrix::solve_this(SCVector*v){  ReplSCVector* lv =    require_dynamic_cast<ReplSCVector*>(v,"ReplSCMatrix::solve_this");    // make sure that the dimensions match  if (!rowdim()->equiv(lv->dim())) {      ExEnv::errn() << indent << "ReplSCMatrix::solve_this(SCVector*v): "           << "dimensions don't match" << endl;      abort();    }  return cmat_solve_lin(rows,0,lv->vector,nrow());}voidReplSCMatrix::schmidt_orthog(SymmSCMatrix *S, int nc){  int i,j,ij;  int m;  ReplSymmSCMatrix* lS =    require_dynamic_cast<ReplSymmSCMatrix*>(S,"ReplSCMatrix::schmidt_orthog");    // make sure that the dimensions match  if (!rowdim()->equiv(lS->dim())) {      ExEnv::errn() << indent << "ReplSCMatrix::schmidt_orthog(): "           << "dimensions don't match" << endl;      abort();    }#if 0  cmat_schmidt(rows,lS->matrix,nrow(),nc);#else  int me = messagegrp()->me();  int nproc = messagegrp()->n();  int nr = nrow();    double vtmp;  double *v = new double[nr];  double *cm = new double[nr];  double **sblock = cmat_new_square_matrix(D1);    int mod = nc%nproc;  int ncoli = nc/nproc + (mod <= me ? 0 : 1);  int cstart = (nc/nproc)*me + (mod <= me ? mod : me);  int cend = cstart+ncoli;  // copy my columns to a rows of temp matrix  double **cols = cmat_new_rect_matrix(ncoli, nr);  for (i=cstart; i < cend; i++)    for (j=0; j < nr; j++)      cols[i-cstart][j] = rows[j][i];      for (m=0; m < nc; m++) {    // who has this column    for (i=0; i < nproc; i++) {      int ni = nc/nproc + (mod <= i ? 0 : 1);      int csi = (nc/nproc)*i + (mod <= i ? mod : i);      if (m >= csi && m < csi+ni) {        if (i==me)          memcpy(cm, cols[m-csi], sizeof(double)*nr);        messagegrp()->bcast(cm, nr, i);        break;      }    }        memset(v, 0, sizeof(double)*nr);        for (i=ij=0; i < nr; i += D1) {      int ni = nr-i;      if (ni > D1) ni = D1;            for (j=0; j < nr; j += D1, ij++) {        if (ij%nproc != me)          continue;        int nj = nr-j;        if (nj > D1) nj = D1;                copy_sym_block(sblock, lS->rows, i, ni, j, nj);                for (int ii=0; ii < ni; ii++)          for (int jj=0; jj < nj; jj++)            v[i+ii] += cm[j+jj]*sblock[ii][jj];      }    }    messagegrp()->sum(v, nr);    for (i=0,vtmp=0.0; i < nr; i++)      vtmp += v[i]*cm[i];    if (!vtmp) {      ExEnv::errn() << "cmat_schmidt: bogus" << endl;      abort();    }    if (vtmp < 1.0e-15)      vtmp = 1.0e-15;    vtmp = 1.0/sqrt(vtmp);        for (i=0; i < nr; i++) {      v[i] *= vtmp;      cm[i] *= vtmp;    }    if (m < nc-1) {      for (i=m+1; i < nc; i++) {        if (i < cstart)          continue;        if (i >= cend)          break;                double *ci = cols[i-cstart];                for (j=0,vtmp=0.0; j < nr; j++)          vtmp += v[j] * ci[j];        for (j=0; j < nr; j++)          ci[j] -= vtmp * cm[j];      }    }    // if I own cm then put it back into cols    if (m >= cstart && m < cend)      memcpy(cols[m-cstart], cm, sizeof(double)*nr);  }  // now collect columns again  for (i=0; i < nproc; i++) {    int ni = nc/nproc + (mod <= i ? 0 : 1);    int csi = (nc/nproc)*i + (mod <= i ? mod : i);    for (j=0; j < ni; j++) {      if (i==me) {        messagegrp()->bcast(cols[j], nr, i);        for (int k=0; k < nr; k++)          rows[k][j+csi] = cols[j][k];      }      else {        messagegrp()->bcast(cm, nr, i);        for (int k=0; k < nr; k++)          rows[k][j+csi] = cm[k];      }    }  }  cmat_delete_matrix(sblock);  cmat_delete_matrix(cols);  delete[] v;  delete[] cm;#endif}intReplSCMatrix::schmidt_orthog_tol(SymmSCMatrix *S, double tol, double *res){  ReplSymmSCMatrix* lS =    require_dynamic_cast<ReplSymmSCMatrix*>(S,"ReplSCMatrix::schmidt_orthog_tol");    // make sure that the dimensions match  if (!rowdim()->equiv(lS->dim())) {      ExEnv::errn() << indent << "ReplSCMatrix::schmidt_orthog_tol(): " <<          "dimensions don't match" << endl;      abort();    }  int northog;  if (messagegrp()->me() == 0) {      northog = cmat_schmidt_tol(rows,lS->matrix,nrow(),ncol(),tol,res);    }  // make sure everybody ends up with the same data  messagegrp()->bcast(northog);  messagegrp()->bcast(*res);  for (int i=0; i<nrow(); i++) {      messagegrp()->bcast(rows[i],ncol());    }  return northog;}voidReplSCMatrix::element_op(const Ref<SCElementOp>& op){  if (op->has_side_effects()) before_elemop();  SCMatrixBlockListIter i;  for (i = blocklist->begin(); i != blocklist->end(); i++) {      op->process_base(i.block());    }  if (op->has_side_effects()) after_elemop();  if (op->has_collect()) op->collect(messagegrp());}voidReplSCMatrix::element_op(const Ref<SCElementOp2>& op,                          SCMatrix* m){  ReplSCMatrix *lm      = require_dynamic_cast<ReplSCMatrix*>(m,"ReplSCMatrix::element_op");  if (!rowdim()->equiv(lm->rowdim()) || !coldim()->equiv(lm->coldim())) {      ExEnv::errn() << indent << "ReplSCMatrix: bad element_op" << endl;      abort();    }  if (op->has_side_effects()) before_elemop();  if (op->has_side_effects_in_arg()) lm->before_elemop();  SCMatrixBlockListIter i, j;  for (i = blocklist->begin(), j = lm->blocklist->begin();       i != blocklist->end();       i++, j++) {      op->process_base(i.block(), j.block());    }  if (op->has_side_effects()) after_elemop();  if (op->has_side_effects_in_arg()) lm->after_elemop();  if (op->has_collect()) op->collect(messagegrp());}voidReplSCMatrix::element_op(const Ref<SCElementOp3>& op,                          SCMatrix* m,SCMatrix* n){  ReplSCMatrix *lm      = require_dynamic_cast<ReplSCMatrix*>(m,"ReplSCMatrix::element_op");  ReplSCMatrix *ln      = require_dynamic_cast<ReplSCMatrix*>(n,"ReplSCMatrix::element_op");  if (!rowdim()->equiv(lm->rowdim()) || !coldim()->equiv(lm->coldim()) ||      !rowdim()->equiv(ln->rowdim()) || !coldim()->equiv(ln->coldim())) {      ExEnv::errn() << indent << "ReplSCMatrix: bad element_op" << endl;      abort();    }  if (op->has_side_effects()) before_elemop();  if (op->has_side_effects_in_arg1()) lm->before_elemop();  if (op->has_side_effects_in_arg2()) ln->before_elemop();  SCMatrixBlockListIter i, j, k;  for (i = blocklist->begin(),           j = lm->blocklist->begin(),           k = ln->blocklist->begin();       i != blocklist->end();       i++, j++, k++) {      op->process_base(i.block(), j.block(), k.block());    }  if (op->has_side_effects()) after_elemop();  if (op->has_side_effects_in_arg1()) lm->after_elemop();  if (op->has_side_effects_in_arg2()) ln->after_elemop();  if (op->has_collect()) op->collect(messagegrp());}// from Ed Seidl at the NIHvoidReplSCMatrix::vprint(const char *title, ostream& os, int prec) const{  int ii,jj,kk,nn;  int i,j;  int lwidth,width;  double max=this->maxabs();  if (messagegrp()->me() != 0) return;  max = (max==0.0) ? 1.0 : log10(max);  if (max < 0.0) max=1.0;  lwidth = prec + 5 + (int) max;  width = 75/(lwidth+SCFormIO::getindent(os));  os.setf(ios::fixed,ios::floatfield); os.precision(prec);  os.setf(ios::right,ios::adjustfield);  if (title)    os << endl << indent << title << endl;  else    os << endl;  if (nrow()==0 || ncol()==0) {    os << indent << "empty matrix" << endl;    return;  }  for (ii=jj=0;;) {    ii++; jj++;    kk=width*jj;    nn = (ncol() > kk) ? kk : ncol();    // print column indices    os << indent;    for (i=ii; i <= nn; i++)      os << setw(lwidth) << i;    os << endl;    // print the rows    for (i=0; i < nrow() ; i++) {      os << setw(5) << i+1;      for (j=ii-1; j < nn; j++)        os << setw(lwidth) << rows[i][j];      os << endl;    }    os << endl;    if (ncol() <= kk) {      os.flush();      return;    }    ii=kk;  }}Ref<SCMatrixSubblockIter>ReplSCMatrix::local_blocks(SCMatrixSubblockIter::Access access){  return new ReplSCMatrixListSubblockIter(access, blocklist,                                          messagegrp(),                                          matrix, d1->n()*d2->n());}Ref<SCMatrixSubblockIter>ReplSCMatrix::all_blocks(SCMatrixSubblockIter::Access access){  if (access == SCMatrixSubblockIter::Write) {      ExEnv::errn() << indent << "ReplSCMatrix::all_blocks: "           << "Write access permitted for local blocks only"           << endl;      abort();    }  Ref<SCMatrixBlockList> allblocklist = new SCMatrixBlockList();  allblocklist->insert(new SCMatrixRectSubBlock(0, d1->n(), d1->n(),                                                0, d2->n(), matrix));  return new ReplSCMatrixListSubblockIter(access, allblocklist,                                          messagegrp(),                                          matrix, d1->n()*d2->n());}Ref<ReplSCMatrixKit>ReplSCMatrix::skit(){  return dynamic_cast<ReplSCMatrixKit*>(kit().pointer());}/////////////////////////////////////////////////////////////////////////////// Local Variables:// mode: c++// c-file-style: "CLJ"// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -