📄 pdsteqr.f
字号:
* =========** F (input) DOUBLE PRECISION* The first component of vector to be rotated.** G (input) DOUBLE PRECISION* The second component of vector to be rotated.** CS (output) DOUBLE PRECISION* The cosine of the rotation.** SN (output) DOUBLE PRECISION* The sine of the rotation.** R (output) DOUBLE PRECISION* The nonzero component of the rotated vector.** =====================================================================** .. Parameters .. DOUBLE PRECISION ZERO PARAMETER ( ZERO = 0.0D0 ) DOUBLE PRECISION ONE PARAMETER ( ONE = 1.0D0 ) DOUBLE PRECISION TWO PARAMETER ( TWO = 2.0D0 )* ..* .. Local Scalars .. LOGICAL FIRST INTEGER COUNT, I DOUBLE PRECISION EPS, F1, G1, SAFMIN, SAFMN2, SAFMX2, SCALE* ..* .. External Functions .. DOUBLE PRECISION PDLAMCH EXTERNAL PDLAMCH* ..* .. Intrinsic Functions .. INTRINSIC ABS, INT, LOG, MAX, SQRT* ..* .. Save statement .. SAVE FIRST, SAFMX2, SAFMIN, SAFMN2* ..* .. Data statements .. DATA FIRST / .TRUE. /* ..* .. Executable Statements ..* IF( FIRST ) THEN FIRST = .FALSE. SAFMIN = PDLAMCH( 'S' ) EPS = PDLAMCH( 'E' ) SAFMN2 = PDLAMCH( 'B' )**INT( LOG( SAFMIN / EPS ) / $ LOG( PDLAMCH( 'B' ) ) / TWO ) SAFMX2 = ONE / SAFMN2 END IF IF( G.EQ.ZERO ) THEN CS = ONE SN = ZERO R = F ELSE IF( F.EQ.ZERO ) THEN CS = ZERO SN = ONE R = G ELSE F1 = F G1 = G SCALE = MAX( ABS( F1 ), ABS( G1 ) ) IF( SCALE.GE.SAFMX2 ) THEN COUNT = 0 10 CONTINUE COUNT = COUNT + 1 F1 = F1*SAFMN2 G1 = G1*SAFMN2 SCALE = MAX( ABS( F1 ), ABS( G1 ) ) IF( SCALE.GE.SAFMX2 ) $ GO TO 10 R = SQRT( F1**2+G1**2 ) CS = F1 / R SN = G1 / R DO 20 I = 1, COUNT R = R*SAFMX2 20 CONTINUE ELSE IF( SCALE.LE.SAFMN2 ) THEN COUNT = 0 30 CONTINUE COUNT = COUNT + 1 F1 = F1*SAFMX2 G1 = G1*SAFMX2 SCALE = MAX( ABS( F1 ), ABS( G1 ) ) IF( SCALE.LE.SAFMN2 ) $ GO TO 30 R = SQRT( F1**2+G1**2 ) CS = F1 / R SN = G1 / R DO 40 I = 1, COUNT R = R*SAFMN2 40 CONTINUE ELSE R = SQRT( F1**2+G1**2 ) CS = F1 / R SN = G1 / R END IF IF( ABS( F ).GT.ABS( G ) .AND. CS.LT.ZERO ) THEN CS = -CS SN = -SN R = -R END IF END IF RETURN** End of DLARTG* END SUBROUTINE PDLASCL( TYPE, KL, KU, CFROM, CTO, M, N, A, LDA, INFO )** -- LAPACK auxiliary routine (version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* February 29, 1992** .. Scalar Arguments .. CHARACTER TYPE INTEGER INFO, KL, KU, LDA, M, N DOUBLE PRECISION CFROM, CTO* ..* .. Array Arguments .. DOUBLE PRECISION A( LDA, * )* ..** Purpose* =======** DLASCL multiplies the M by N real matrix A by the real scalar* CTO/CFROM. This is done without over/underflow as long as the final* result CTO*A(I,J)/CFROM does not over/underflow. TYPE specifies that* A may be full, upper triangular, lower triangular, upper Hessenberg,* or banded.** Arguments* =========** TYPE (input) CHARACTER*1* TYPE indices the storage type of the input matrix.* = 'G': A is a full matrix.* = 'L': A is a lower triangular matrix.* = 'U': A is an upper triangular matrix.* = 'H': A is an upper Hessenberg matrix.* = 'B': A is a symmetric band matrix with lower bandwidth KL* and upper bandwidth KU and with the only the lower* half stored.* = 'Q': A is a symmetric band matrix with lower bandwidth KL* and upper bandwidth KU and with the only the upper* half stored.* = 'Z': A is a band matrix with lower bandwidth KL and upper* bandwidth KU.** KL (input) INTEGER* The lower bandwidth of A. Referenced only if TYPE = 'B',* 'Q' or 'Z'.** KU (input) INTEGER* The upper bandwidth of A. Referenced only if TYPE = 'B',* 'Q' or 'Z'.** CFROM (input) DOUBLE PRECISION* CTO (input) DOUBLE PRECISION* The matrix A is multiplied by CTO/CFROM. A(I,J) is computed* without over/underflow if the final result CTO*A(I,J)/CFROM* can be represented without over/underflow. CFROM must be* nonzero.** M (input) INTEGER* The number of rows of the matrix A. M >= 0.** N (input) INTEGER* The number of columns of the matrix A. N >= 0.** A (input/output) DOUBLE PRECISION array, dimension (LDA,M)* The matrix to be multiplied by CTO/CFROM. See TYPE for the* storage type.** LDA (input) INTEGER* The leading dimension of the array A. LDA >= max(1,M).** INFO (output) INTEGER* 0 - successful exit* <0 - if INFO = -i, the i-th argument had an illegal value.** =====================================================================** .. Parameters .. DOUBLE PRECISION ZERO, ONE PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )* ..* .. Local Scalars .. LOGICAL DONE INTEGER I, ITYPE, J, K1, K2, K3, K4 DOUBLE PRECISION BIGNUM, CFROM1, CFROMC, CTO1, CTOC, MUL, SMLNUM* ..* .. External Functions .. LOGICAL PLSAME DOUBLE PRECISION PDLAMCH EXTERNAL PLSAME, PDLAMCH* ..* .. Intrinsic Functions .. INTRINSIC ABS, MAX, MIN* ..* .. External Subroutines .. EXTERNAL PXERBLA* ..* .. Executable Statements ..** Test the input arguments* INFO = 0* IF( PLSAME( TYPE, 'G' ) ) THEN ITYPE = 0 ELSE IF( PLSAME( TYPE, 'L' ) ) THEN ITYPE = 1 ELSE IF( PLSAME( TYPE, 'U' ) ) THEN ITYPE = 2 ELSE IF( PLSAME( TYPE, 'H' ) ) THEN ITYPE = 3 ELSE IF( PLSAME( TYPE, 'B' ) ) THEN ITYPE = 4 ELSE IF( PLSAME( TYPE, 'Q' ) ) THEN ITYPE = 5 ELSE IF( PLSAME( TYPE, 'Z' ) ) THEN ITYPE = 6 ELSE ITYPE = -1 END IF* IF( ITYPE.EQ.-1 ) THEN INFO = -1 ELSE IF( CFROM.EQ.ZERO ) THEN INFO = -4 ELSE IF( M.LT.0 ) THEN INFO = -6 ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.4 .AND. N.NE.M ) .OR. $ ( ITYPE.EQ.5 .AND. N.NE.M ) ) THEN INFO = -7 ELSE IF( ITYPE.LE.3 .AND. LDA.LT.MAX( 1, M ) ) THEN INFO = -9 ELSE IF( ITYPE.GE.4 ) THEN IF( KL.LT.0 .OR. KL.GT.MAX( M-1, 0 ) ) THEN INFO = -2 ELSE IF( KU.LT.0 .OR. KU.GT.MAX( N-1, 0 ) .OR. $ ( ( ITYPE.EQ.4 .OR. ITYPE.EQ.5 ) .AND. KL.NE.KU ) ) $ THEN INFO = -3 ELSE IF( ( ITYPE.EQ.4 .AND. LDA.LT.KL+1 ) .OR. $ ( ITYPE.EQ.5 .AND. LDA.LT.KU+1 ) .OR. $ ( ITYPE.EQ.6 .AND. LDA.LT.2*KL+KU+1 ) ) THEN INFO = -9 END IF END IF* IF( INFO.NE.0 ) THEN CALL PXERBLA( 'PDLASCL', -INFO ) RETURN END IF** Quick return if possible* IF( N.EQ.0 .OR. M.EQ.0 ) $ RETURN** Get machine parameters* SMLNUM = PDLAMCH( 'S' ) BIGNUM = ONE / SMLNUM* CFROMC = CFROM CTOC = CTO* 10 CONTINUE CFROM1 = CFROMC*SMLNUM CTO1 = CTOC / BIGNUM IF( ABS( CFROM1 ).GT.ABS( CTOC ) .AND. CTOC.NE.ZERO ) THEN MUL = SMLNUM DONE = .FALSE. CFROMC = CFROM1 ELSE IF( ABS( CTO1 ).GT.ABS( CFROMC ) ) THEN MUL = BIGNUM DONE = .FALSE. CTOC = CTO1 ELSE MUL = CTOC / CFROMC DONE = .TRUE. END IF* IF( ITYPE.EQ.0 ) THEN** Full matrix* DO 30 J = 1, N DO 20 I = 1, M A( I, J ) = A( I, J )*MUL 20 CONTINUE 30 CONTINUE* ELSE IF( ITYPE.EQ.1 ) THEN** Lower triangular matrix* DO 50 J = 1, N DO 40 I = J, M A( I, J ) = A( I, J )*MUL 40 CONTINUE 50 CONTINUE* ELSE IF( ITYPE.EQ.2 ) THEN** Upper triangular matrix* DO 70 J = 1, N DO 60 I = 1, MIN( J, M ) A( I, J ) = A( I, J )*MUL 60 CONTINUE 70 CONTINUE* ELSE IF( ITYPE.EQ.3 ) THEN** Upper Hessenberg matrix* DO 90 J = 1, N DO 80 I = 1, MIN( J+1, M ) A( I, J ) = A( I, J )*MUL 80 CONTINUE 90 CONTINUE* ELSE IF( ITYPE.EQ.4 ) THEN** Lower half of a symmetric band matrix* K3 = KL + 1 K4 = N + 1 DO 110 J = 1, N DO 100 I = 1, MIN( K3, K4-J ) A( I, J ) = A( I, J )*MUL 100 CONTINUE 110 CONTINUE* ELSE IF( ITYPE.EQ.5 ) THEN** Upper half of a symmetric band matrix* K1 = KU + 2 K3 = KU + 1 DO 130 J = 1, N DO 120 I = MAX( K1-J, 1 ), K3 A( I, J ) = A( I, J )*MUL 120 CONTINUE 130 CONTINUE* ELSE IF( ITYPE.EQ.6 ) THEN** Band matrix* K1 = KL + KU + 2 K2 = KL + 1 K3 = 2*KL + KU + 1 K4 = KL + KU + 1 + M DO 150 J = 1, N DO 140 I = MAX( K1-J, K2 ), MIN( K3, K4-J ) A( I, J ) = A( I, J )*MUL 140 CONTINUE 150 CONTINUE* END IF* IF( .NOT.DONE ) $ GO TO 10* RETURN** End of DLASCL* END SUBROUTINE PDLASET( UPLO, M, N, ALPHA, BETA, A, LDA )** -- LAPACK auxiliary routine (version 3.0) --* Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,* Courant Institute, Argonne National Lab, and Rice University* October 31, 1992** .. Scalar Arguments .. CHARACTER UPLO INTEGER LDA, M, N DOUBLE PRECISION ALPHA, BETA* ..* .. Array Arguments .. DOUBLE PRECISION A( LDA, * )* ..** Purpose* =======** DLASET initializes an m-by-n matrix A to BETA on the diagonal and* ALPHA on the offdiagonals.** Arguments* =========** UPLO (input) CHARACTER*1* Specifies the part of the matrix A to be set.* = 'U': Upper triangular part is set; the strictly lower* triangular part of A is not changed.* = 'L': Lower triangular part is set; the strictly upper* triangular part of A is not changed.* Otherwise: All of the matrix A is set.** M (input) INTEGER* The number of rows of the matrix A. M >= 0.** N (input) INTEGER* The number of columns of the matrix A. N >= 0.** ALPHA (input) DOUBLE PRECISION* The constant to which the offdiagonal elements are to be set.** BETA (input) DOUBLE PRECISION* The constant to which the diagonal elements are to be set.** A (input/output) DOUBLE PRECISION array, dimension (LDA,N)* On exit, the leading m-by-n submatrix of A is set as follows:** if UPLO = 'U', A(i,j) = ALPHA, 1<=i<=j-1, 1<=j<=n,* if UPLO = 'L', A(i,j) = ALPHA, j+1<=i<=m, 1<=j<=n,* otherwise, A(i,j) = ALPHA, 1<=i<=m, 1<=j<=n, i.ne.j,** and, for all UPLO, A(i,i) = BETA, 1<=i<=min(m,n).** LDA (input) INTEGER* The leading dimension of the array A. LDA >= max(1,M).** =====================================================================** .. Local Scalars .. INTEGER I, J* ..* .. External Functions .. LOGICAL PLSAME EXTERNAL PLSAME* ..* .. Intrinsic Functions .. INTRINSIC MIN* ..* .. Executable Statements ..* IF( PLSAME( UPLO, 'U' ) ) THEN** Set the strictly upper triangular or trapezoidal part of the* array to ALPHA.* DO 20 J = 2, N DO 10 I = 1, MIN( J-1, M ) A( I, J ) = ALPHA 10 CONTINUE 20 CONTINUE* ELSE IF( PLSAME( UPLO, 'L' ) )
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -