📄 cscphf.cc
字号:
//// cscphf.cc//// Copyright (C) 1996 Limit Point Systems, Inc.//// Author: Ida Nielsen <ida@kemi.aau.dk>// Maintainer: LPS//// This file is part of the SC Toolkit.//// The SC Toolkit is free software; you can redistribute it and/or modify// it under the terms of the GNU Library General Public License as published by// the Free Software Foundation; either version 2, or (at your option)// any later version.//// The SC Toolkit is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU Library General Public License for more details.//// You should have received a copy of the GNU Library General Public License// along with the SC Toolkit; see the file COPYING.LIB. If not, write to// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.//// The U.S. Government is granted a limited license as per AL 91-7.//#include <math.h>#include <stdlib.h>#include <iostream>#include <util/misc/formio.h>#include <util/keyval/keyval.h>#include <math/scmat/matrix.h>#include <chemistry/molecule/molecule.h>#include <chemistry/qc/basis/basis.h>#include <chemistry/qc/mbpt/mbpt.h>using namespace std;using namespace sc;static voidcompute_alpha(int dim, double **AP, double **alpha, double **P, double *eigval, int nocc, int nvir);//////////////////////////////////////////////////////////////////////////// Do a direct CPHF calculation in the AO basis; equations are formulated// in terms of the occ-vir block P2aj of the second order correction (P2) to // the MP2 density matrix (cf. Frisch et al., CPL 166, p. 275 (1990)).//// CPHF equations: // (I-A)P2aj - B = 0 (B(a,j) = L(a,j)/(eigval[a]-eigval[j]))// A is a matrix (dimension dimP*dimP),// P2aj and B are vectors (dimension dimP)// (P2aj is kept as a RefSCMatrix);// Only closed-shell cases handled; no orbitals can be frozen// On exit, P2aj has been computed.void MBPT2::cs_cphf(double **scf_vector, double *Laj, double *eigval, RefSCMatrix& P2aj){ double epsilon = cphf_epsilon_; //convergence criterion for P2aj int i, j, k, l, a; int niter; int dimP = nocc*nvir; Ref<SCMatrixKit> kit = basis()->matrixkit(); RefSCDimension nbasis_dim = ao_dimension()->blocks()->subdim(0); RefSCDimension nvir_dim(new SCDimension(nvir,1)); nvir_dim->blocks()->set_subdim(0, new SCDimension(nvir)); RefSCDimension nocc_dim(new SCDimension(nocc,1)); nocc_dim->blocks()->set_subdim(0, new SCDimension(nocc)); RefSCMatrix Cv(nbasis_dim,nvir_dim,kit); RefSCMatrix Co(nbasis_dim,nocc_dim,kit); RefSCMatrix D_matrix(nbasis_dim,nbasis_dim,kit); RefSCMatrix AP_matrix(nvir_dim,nocc_dim,kit); // holds A*P[i-1] RefSCMatrix P_matrix(nvir_dim, nocc_dim, kit); RefSymmSCMatrix G(nbasis_dim,kit); double *projctn = new double[dimP]; double *P_sum_new = new double[dimP]; double *P_sum_old = new double[dimP]; double **AP_matrix_tot; // row is A*P[k] double **P_tmp, **alpha_tmp, **AP_matrix_tmp; double **P; double *D; double **alpha; double *ptr1, *ptr2; double *laj_ptr; double dot_prod; double coef; double tmp_val1, tmp_val2; double maxabs; // Debug print if (debug_) ExEnv::out0() << indent << "Entered cphf" << endl; // End of debug print //////////////////////////////////////////////////////////// // Allocate and initialize various variables //////////////////////////////////////////////////////////// AP_matrix_tot = new double*[1]; AP_matrix_tot[0] = new double[dimP]; alpha = new double*[1]; alpha[0] = new double[1]; P = new double*[1]; P[0] = new double[dimP]; D = new double[nbasis*nbasis]; // NB: Elements in Laj are ordered as (j*nvir + a) // since this ordering has been used with benefit in // MP2 gradient program ptr1 = P[0]; ptr2 = P_sum_old; for (a=0; a<nvir; a++) { laj_ptr = &Laj[a]; for (j=0; j<nocc; j++) { *ptr1++ = *laj_ptr/(eigval[a+nocc]-eigval[j]); *ptr2++ = 0.0; laj_ptr += nvir; } } for (i=0; i<nbasis; i++) { for (j=0; j<noso; j++) { if (j<nocc) Co(i,j) = scf_vector[i][j]; else Cv(i,j-nocc) = scf_vector[i][j]; } } ///////////////////////////////////////////////////////////////// // Solve the CPHF equations (iteratively, with DIIS like method) ///////////////////////////////////////////////////////////////// i = 0; niter = 0; const int maxiter = 30; const int warniter = 1; while (niter < maxiter) { // Allow max maxiter iterations niter++; i++; if (debug_) ExEnv::out0() << indent << scprintf("niter: %i\n", niter); // First expand AP_matrix_tot, alpha and P with an extra row AP_matrix_tmp = new double *[i+1]; if (!AP_matrix_tmp) { ExEnv::errn() << "Could not allocate AP_matrix_tmp" << endl; abort(); } alpha_tmp = new double *[i+1]; if (!alpha_tmp) { ExEnv::errn() << "Could not allocate alpha_tmp" << endl; abort(); } P_tmp = new double *[i+1]; if (!P_tmp) { ExEnv::errn() << "Could not allocate P_tmp" << endl; abort(); } for (j=0; j<i; j++) { AP_matrix_tmp[j] = AP_matrix_tot[j]; alpha_tmp[j] = alpha[j]; P_tmp[j] = P[j]; } AP_matrix_tmp[i] = new double[dimP]; if (!AP_matrix_tmp[i]) { ExEnv::errn() << scprintf("Could not allocate AP_matrix_tmp[i], i = %i",i) << endl; abort(); } delete[] AP_matrix_tot; AP_matrix_tot = AP_matrix_tmp; alpha_tmp[i] = new double[1]; if (!alpha_tmp[i]) { ExEnv::errn() << scprintf("Could not allocate alpha_tmp[i], i = %i",i) << endl; abort(); } delete[] alpha; alpha = alpha_tmp; P_tmp[i] = new double[dimP]; if (!P_tmp[i]) { ExEnv::errn() << scprintf("Could not allocate P_tmp[i], i = %i",i) << endl; abort(); } delete[] P; P = P_tmp; // Initialize P[i] for (j=0; j<dimP; j++) P[i][j] = 0.0; // Compute A*P[i-1] (called AP_matrix) which is required to get P[i] // A*P[i-1] is treated as a matrix to facilitate its computation // A*P[i-1] is put into row i-1 of AP_matrix_tot ptr1 = P[i-1]; for (j=0; j<nvir; j++) { for (k=0; k<nocc; k++) { P_matrix->set_element(j,k,*ptr1++); // Convert P[i-1] to RefSCMatrix } } D_matrix = Cv*P_matrix*Co.t();#if 0 D_matrix = D_matrix + D_matrix.t(); D_matrix->convert(D); // Convert D_matrix to double* D make_cs_gmat(G, D);#else RefSymmSCMatrix sD(D_matrix.rowdim(), kit); sD.assign(0.0); sD.accumulate_symmetric_sum(D_matrix); make_cs_gmat_new(G, sD);#endif AP_matrix = 2*Cv.t()*G*Co; ptr1 = AP_matrix_tot[i-1]; for (j=0; j<nvir; j++) { for (k=0; k<nocc; k++) { tmp_val1 = AP_matrix->get_element(j,k)/(eigval[k]-eigval[j+nocc]); AP_matrix->set_element(j,k,tmp_val1); *ptr1++ = tmp_val1; } } // End of AP_matrix computation // Compute coefficients alpha[0],...,alpha[i-1] compute_alpha(i, AP_matrix_tot, alpha, P, eigval, nocc, nvir); // Compute the vector P_sum_new = alpha[0]P[0]+...+alpha[i-1]P[i-1] ptr1 = P_sum_new; for (j=0; j<dimP; j++) *ptr1++ = 0.0; for (j=0; j<i; j++) { tmp_val1 = alpha[j][0]; ptr1 = P_sum_new; ptr2 = P[j]; for (k=0; k<dimP; k++) { *ptr1++ += tmp_val1 * *ptr2++; } } ///////////////////////////////////////////////////////////// // Test for convergence // (based on RMS(P2aj_new - P2aj_old) // and max abs. val. of element) ///////////////////////////////////////////////////////////// ptr1 = P_sum_new; ptr2 = P_sum_old; tmp_val1 = 0.0; maxabs = 0.0; for (j=0; j<dimP; j++) { tmp_val2 = *ptr1++ - *ptr2++; tmp_val1 += tmp_val2*tmp_val2; if (fabs(tmp_val2) > maxabs) maxabs = fabs(tmp_val2); } if (debug_) { ExEnv::out0() << indent << scprintf("RMS(P2aj_new-P2aj_old) = %12.10lf", sqrt((tmp_val1)/dimP)) << endl; ExEnv::out0() << indent << scprintf("max. abs. element of (P2aj_new-P2aj_old) = %12.10lf", maxabs) << endl; } if (sqrt(tmp_val1)/dimP < epsilon && maxabs < epsilon) break; // Converged // Put P_sum_new into P_sum old ptr1 = P_sum_new; ptr2 = P_sum_old; for (j=0; j<dimP; j++) { *ptr2++ = *ptr1++; } // Compute projection of A*P[i-1] on P[0],...,P[i-1] ptr1 = projctn; for (j=0; j<dimP; j++) *ptr1++ = 0.0; for (j=0; j<i; j++) { dot_prod = 0.0; ptr1 = P[j]; for (k=0; k<dimP; k++) { tmp_val1 = *ptr1++; dot_prod += tmp_val1*tmp_val1; // Compute dot product <P[j]|P[j]> } ptr1 = P[j]; coef = 0.0; for (k=0; k<nvir; k++) { for (l=0; l<nocc; l++) { coef += *ptr1++ * AP_matrix->get_element(k,l); } } coef /= dot_prod; ptr1 = P[j]; ptr2 = projctn; for (k=0; k<dimP; k++) { *ptr2++ += coef * *ptr1++; } } // Compute P[i] as A*P[i-1] - projctn ptr1 = P[i]; ptr2 = projctn; for (j=0; j<nvir; j++) { for (k=0; k<nocc; k++) { *ptr1++ = AP_matrix->get_element(j,k) - *ptr2++; } } ///////////////////////////////////////////// // Test for convergence (based on norm(P[i]) ///////////////////////////////////////////// tmp_val1 = 0.0; for (l=0; l<dimP; l++) { tmp_val1 += P[niter][l]*P[niter][l]; } tmp_val1 = sqrt(tmp_val1); if (debug_) ExEnv::out0() << indent << scprintf("norm(P[niter]) = %12.10lf", tmp_val1) << endl; if (tmp_val1 < epsilon) { // Converged (if norm of new vector is zero) ExEnv::out0() << indent << scprintf("CPHF: iter = %2d rms(P) = %12.10f eps = %12.10f", niter, tmp_val1, epsilon) << endl << endl; break; } if (niter >= warniter) { ExEnv::out0() << indent << scprintf("CPHF: iter = %2d rms(P) = %12.10f eps = %12.10f", niter, tmp_val1, epsilon) << endl; } } /////////////////////////////////////////////////////////////// // If CPHF equations did not converge, exit with error message /////////////////////////////////////////////////////////////// if (niter == maxiter) { ExEnv::out0() << indent << "CPHF equations did not converge in " << maxiter << " iterations" << endl; abort(); } ///////////////////////////////////////////////////// // The converged vector is in P_sum_new; // Put elements into P2aj // NB: Elements in P2aj are ordered as (a*nocc + j); ///////////////////////////////////////////////////// ptr1 = P_sum_new; for (i=0; i<nvir; i++) { for (j=0; j<nocc; j++) { P2aj->set_element(i,j,*ptr1++); } } // Debug print if (debug_) ExEnv::out0() << indent << "Exiting cphf" << endl; // End of debug print // Deallocate various arrays delete[] D; for (i=0; i<niter+1; i++) { delete[] AP_matrix_tot[i]; delete[] alpha[i]; delete[] P[i]; } delete[] AP_matrix_tot; delete[] alpha; delete[] P; delete[] projctn; delete[] P_sum_new; delete[] P_sum_old;}static voidcompute_alpha(int dim, double **AP, double **alpha, double **P, double *eigval, int nocc, int nvir){ ////////////////////////////////////////////////////// // Solve the linear system of equations C*X = B // where C is RefSCMatrix and X and B are RefSCVector // Put result (X) into array alpha ////////////////////////////////////////////////////// int i, j, k; int vect_dim = nocc*nvir; double tmp1, tmp2; double *ptr1, *ptr2; double *norm = new double[dim]; // contains norms of vectors P[i], i=0,dim Ref<SCMatrixKit> kit = SCMatrixKit::default_matrixkit(); RefSCDimension C_dim(new SCDimension(dim)); RefSCMatrix C(C_dim,C_dim,kit); RefSCVector B(C_dim,kit); RefSCVector X(C_dim,kit); // Compute norms of vectors P[i] and put into norm for (i=0; i<dim; i++) norm[i] = 0.0; ptr1 = norm; for (i=0; i<dim; i++) { ptr2 = P[i]; for (j=0; j<vect_dim; j++) { *ptr1 += *ptr2 * *ptr2; ptr2++; } ptr1++; } for (i=0; i<dim; i++) norm[i] = sqrt(norm[i]); // Construct matrix C for (i=0; i<dim; i++) { for (j=0; j<dim; j++) { tmp1 = 0.0; ptr1 = P[i]; ptr2 = AP[j]; for (k=0; k<vect_dim; k++) { tmp1 -= *ptr1++ * *ptr2++; } if (i == j) { ptr1 = P[i]; for (k=0; k<vect_dim; k++) { tmp2 = *ptr1++; tmp1 += tmp2*tmp2; } } C->set_element(i,j,tmp1/(norm[i]*norm[j])); } } // Construct vector B B->set_element(0,norm[0]); for (i=1; i<dim; i++) B->set_element(i,0.0); // Compute X = inv(C)*B X = C.i()*B; // Put elements of X into alpha for (i=0; i<dim; i++) { alpha[i][0] = X->get_element(i)/norm[i]; } delete[] norm;}////////////////////////////////////////////////////////////////////////////// Local Variables:// mode: c++// c-file-style: "CLJ-CONDENSED"// End:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -