⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cscphf.cc

📁 大型并行量子化学软件;支持密度泛函(DFT)。可以进行各种量子化学计算。支持CHARMM并行计算。非常具有应用价值。
💻 CC
字号:
//// cscphf.cc//// Copyright (C) 1996 Limit Point Systems, Inc.//// Author: Ida Nielsen <ida@kemi.aau.dk>// Maintainer: LPS//// This file is part of the SC Toolkit.//// The SC Toolkit is free software; you can redistribute it and/or modify// it under the terms of the GNU Library General Public License as published by// the Free Software Foundation; either version 2, or (at your option)// any later version.//// The SC Toolkit is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU Library General Public License for more details.//// You should have received a copy of the GNU Library General Public License// along with the SC Toolkit; see the file COPYING.LIB.  If not, write to// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.//// The U.S. Government is granted a limited license as per AL 91-7.//#include <math.h>#include <stdlib.h>#include <iostream>#include <util/misc/formio.h>#include <util/keyval/keyval.h>#include <math/scmat/matrix.h>#include <chemistry/molecule/molecule.h>#include <chemistry/qc/basis/basis.h>#include <chemistry/qc/mbpt/mbpt.h>using namespace std;using namespace sc;static voidcompute_alpha(int dim, double **AP, double **alpha,              double **P, double *eigval, int nocc, int nvir);//////////////////////////////////////////////////////////////////////////// Do a direct CPHF calculation in the AO basis; equations are formulated// in terms of the occ-vir block P2aj of the second order correction (P2) to // the MP2 density matrix (cf. Frisch et al., CPL 166, p. 275 (1990)).//// CPHF equations: // (I-A)P2aj - B = 0 (B(a,j) = L(a,j)/(eigval[a]-eigval[j]))// A is a matrix (dimension dimP*dimP),// P2aj and B are vectors (dimension dimP)//   (P2aj is kept as a RefSCMatrix);// Only closed-shell cases handled; no orbitals can be frozen// On exit, P2aj has been computed.void MBPT2::cs_cphf(double **scf_vector,               double *Laj, double *eigval, RefSCMatrix& P2aj){  double epsilon = cphf_epsilon_; //convergence criterion for P2aj  int i, j, k, l, a;  int niter;  int dimP = nocc*nvir;  Ref<SCMatrixKit> kit = basis()->matrixkit();  RefSCDimension nbasis_dim = ao_dimension()->blocks()->subdim(0);  RefSCDimension nvir_dim(new SCDimension(nvir,1));  nvir_dim->blocks()->set_subdim(0, new SCDimension(nvir));  RefSCDimension nocc_dim(new SCDimension(nocc,1));  nocc_dim->blocks()->set_subdim(0, new SCDimension(nocc));  RefSCMatrix Cv(nbasis_dim,nvir_dim,kit);  RefSCMatrix Co(nbasis_dim,nocc_dim,kit);  RefSCMatrix D_matrix(nbasis_dim,nbasis_dim,kit);  RefSCMatrix AP_matrix(nvir_dim,nocc_dim,kit); // holds A*P[i-1]  RefSCMatrix P_matrix(nvir_dim, nocc_dim, kit);  RefSymmSCMatrix G(nbasis_dim,kit);  double *projctn = new double[dimP];  double *P_sum_new = new double[dimP];  double *P_sum_old = new double[dimP];  double **AP_matrix_tot; // row is A*P[k]  double **P_tmp, **alpha_tmp, **AP_matrix_tmp;  double **P;  double *D;  double **alpha;  double *ptr1, *ptr2;  double *laj_ptr;  double dot_prod;  double coef;  double tmp_val1, tmp_val2;  double maxabs;  // Debug print  if (debug_)    ExEnv::out0() << indent << "Entered cphf" << endl;  // End of debug print  ////////////////////////////////////////////////////////////  // Allocate and initialize various variables  ////////////////////////////////////////////////////////////  AP_matrix_tot = new double*[1];  AP_matrix_tot[0] = new double[dimP];  alpha = new double*[1];  alpha[0] = new double[1];  P = new double*[1];  P[0] = new double[dimP];  D = new double[nbasis*nbasis];  // NB: Elements in Laj are ordered as (j*nvir + a)  // since this ordering has been used with benefit in  // MP2 gradient program  ptr1 = P[0];  ptr2 = P_sum_old;  for (a=0; a<nvir; a++) {    laj_ptr = &Laj[a];    for (j=0; j<nocc; j++) {      *ptr1++ = *laj_ptr/(eigval[a+nocc]-eigval[j]);      *ptr2++ = 0.0;      laj_ptr += nvir;      }    }  for (i=0; i<nbasis; i++) {    for (j=0; j<noso; j++) {      if (j<nocc) Co(i,j) = scf_vector[i][j];      else Cv(i,j-nocc) = scf_vector[i][j];      }    }  /////////////////////////////////////////////////////////////////  // Solve the CPHF equations (iteratively, with DIIS like method)   /////////////////////////////////////////////////////////////////  i = 0;  niter = 0;  const int maxiter = 30;  const int warniter = 1;  while (niter < maxiter) { // Allow max maxiter iterations    niter++;    i++;    if (debug_)      ExEnv::out0() << indent << scprintf("niter: %i\n", niter);    // First expand AP_matrix_tot, alpha and P with an extra row    AP_matrix_tmp = new double *[i+1];    if (!AP_matrix_tmp) {      ExEnv::errn() << "Could not allocate AP_matrix_tmp" << endl;      abort();      }    alpha_tmp = new double *[i+1];    if (!alpha_tmp) {      ExEnv::errn() << "Could not allocate alpha_tmp" << endl;      abort();      }    P_tmp = new double *[i+1];    if (!P_tmp) {      ExEnv::errn() << "Could not allocate P_tmp" << endl;      abort();      }    for (j=0; j<i; j++) {      AP_matrix_tmp[j] = AP_matrix_tot[j];      alpha_tmp[j] = alpha[j];      P_tmp[j] = P[j];      }    AP_matrix_tmp[i] = new double[dimP];    if (!AP_matrix_tmp[i]) {      ExEnv::errn() << scprintf("Could not allocate AP_matrix_tmp[i], i = %i",i) << endl;      abort();      }    delete[] AP_matrix_tot;    AP_matrix_tot = AP_matrix_tmp;    alpha_tmp[i] = new double[1];    if (!alpha_tmp[i]) {      ExEnv::errn() << scprintf("Could not allocate alpha_tmp[i], i = %i",i) << endl;      abort();      }    delete[] alpha;    alpha = alpha_tmp;    P_tmp[i] = new double[dimP];    if (!P_tmp[i]) {      ExEnv::errn() << scprintf("Could not allocate P_tmp[i], i = %i",i) << endl;      abort();      }    delete[] P;    P = P_tmp;    // Initialize P[i]    for (j=0; j<dimP; j++) P[i][j] = 0.0;    // Compute A*P[i-1] (called AP_matrix) which is required to get P[i]    // A*P[i-1] is treated as a matrix to facilitate its computation    // A*P[i-1] is put into row i-1 of AP_matrix_tot    ptr1 = P[i-1];    for (j=0; j<nvir; j++) {      for (k=0; k<nocc; k++) {        P_matrix->set_element(j,k,*ptr1++);  // Convert P[i-1] to RefSCMatrix        }      }    D_matrix = Cv*P_matrix*Co.t();#if 0    D_matrix = D_matrix + D_matrix.t();    D_matrix->convert(D);  // Convert D_matrix to double* D    make_cs_gmat(G, D);#else    RefSymmSCMatrix sD(D_matrix.rowdim(), kit);    sD.assign(0.0);    sD.accumulate_symmetric_sum(D_matrix);    make_cs_gmat_new(G, sD);#endif    AP_matrix = 2*Cv.t()*G*Co;    ptr1 = AP_matrix_tot[i-1];    for (j=0; j<nvir; j++) {      for (k=0; k<nocc; k++) {        tmp_val1 = AP_matrix->get_element(j,k)/(eigval[k]-eigval[j+nocc]);        AP_matrix->set_element(j,k,tmp_val1);        *ptr1++ = tmp_val1;        }      }    // End of AP_matrix computation    // Compute coefficients alpha[0],...,alpha[i-1]    compute_alpha(i, AP_matrix_tot, alpha, P, eigval, nocc, nvir);    // Compute the vector P_sum_new = alpha[0]P[0]+...+alpha[i-1]P[i-1]    ptr1 = P_sum_new;    for (j=0; j<dimP; j++) *ptr1++ = 0.0;    for (j=0; j<i; j++) {      tmp_val1 = alpha[j][0];      ptr1 = P_sum_new;      ptr2 = P[j];      for (k=0; k<dimP; k++) {        *ptr1++ += tmp_val1 * *ptr2++;        }      }    /////////////////////////////////////////////////////////////    // Test for convergence     // (based on RMS(P2aj_new - P2aj_old)     //  and max abs. val. of element)    /////////////////////////////////////////////////////////////    ptr1 = P_sum_new;    ptr2 = P_sum_old;    tmp_val1 = 0.0;    maxabs = 0.0;    for (j=0; j<dimP; j++) {       tmp_val2 = *ptr1++ - *ptr2++;       tmp_val1 += tmp_val2*tmp_val2;       if (fabs(tmp_val2) > maxabs) maxabs = fabs(tmp_val2);       }    if (debug_) {      ExEnv::out0() << indent << scprintf("RMS(P2aj_new-P2aj_old) = %12.10lf",                                          sqrt((tmp_val1)/dimP))           << endl;      ExEnv::out0() << indent           << scprintf("max. abs. element of (P2aj_new-P2aj_old) = %12.10lf",                       maxabs)           << endl;      }    if (sqrt(tmp_val1)/dimP < epsilon && maxabs < epsilon) break; // Converged    // Put P_sum_new into P_sum old    ptr1 = P_sum_new;    ptr2 = P_sum_old;    for (j=0; j<dimP; j++) {      *ptr2++ = *ptr1++;      }    // Compute projection of A*P[i-1] on P[0],...,P[i-1]    ptr1 = projctn;    for (j=0; j<dimP; j++) *ptr1++ = 0.0;    for (j=0; j<i; j++) {      dot_prod = 0.0;      ptr1 = P[j];      for (k=0; k<dimP; k++) {        tmp_val1 = *ptr1++;        dot_prod += tmp_val1*tmp_val1; // Compute dot product <P[j]|P[j]>        }      ptr1 = P[j];      coef = 0.0;      for (k=0; k<nvir; k++) {        for (l=0; l<nocc; l++) {          coef += *ptr1++ * AP_matrix->get_element(k,l);          }        }      coef /= dot_prod;      ptr1 = P[j];      ptr2 = projctn;      for (k=0; k<dimP; k++) {        *ptr2++ += coef * *ptr1++;        }      }    // Compute P[i] as A*P[i-1] - projctn    ptr1 = P[i];    ptr2 = projctn;    for (j=0; j<nvir; j++) {      for (k=0; k<nocc; k++) {        *ptr1++ = AP_matrix->get_element(j,k) - *ptr2++;        }      }    /////////////////////////////////////////////    // Test for convergence (based on norm(P[i])    /////////////////////////////////////////////    tmp_val1 = 0.0;    for (l=0; l<dimP; l++) {      tmp_val1 += P[niter][l]*P[niter][l];      }    tmp_val1 = sqrt(tmp_val1);    if (debug_)      ExEnv::out0() << indent           << scprintf("norm(P[niter]) = %12.10lf", tmp_val1) << endl;    if (tmp_val1 < epsilon) {  // Converged (if norm of new vector is zero)      ExEnv::out0() << indent                   << scprintf("CPHF: iter = %2d rms(P) = %12.10f eps = %12.10f",                               niter, tmp_val1, epsilon)                   << endl << endl;      break;      }    if (niter >= warniter) {      ExEnv::out0() << indent           << scprintf("CPHF: iter = %2d rms(P) = %12.10f eps = %12.10f",                       niter, tmp_val1, epsilon)           << endl;      }    }  ///////////////////////////////////////////////////////////////  // If CPHF equations did not converge, exit with error message  ///////////////////////////////////////////////////////////////  if (niter == maxiter) {    ExEnv::out0() << indent         << "CPHF equations did not converge in " << maxiter << " iterations"         << endl;    abort();    }  /////////////////////////////////////////////////////  // The converged vector is in P_sum_new;  // Put elements into P2aj  // NB: Elements in P2aj are ordered as (a*nocc + j);  /////////////////////////////////////////////////////  ptr1 = P_sum_new;  for (i=0; i<nvir; i++) {    for (j=0; j<nocc; j++) {      P2aj->set_element(i,j,*ptr1++);      }    }  // Debug print  if (debug_)    ExEnv::out0() << indent << "Exiting cphf" << endl;  // End of debug print  // Deallocate various arrays  delete[] D;  for (i=0; i<niter+1; i++) {    delete[] AP_matrix_tot[i];    delete[] alpha[i];    delete[] P[i];    }  delete[] AP_matrix_tot;  delete[] alpha;  delete[] P;  delete[] projctn;  delete[] P_sum_new;  delete[] P_sum_old;}static voidcompute_alpha(int dim, double **AP, double **alpha,              double **P, double *eigval, int nocc, int nvir){  //////////////////////////////////////////////////////  // Solve the linear system of equations C*X = B  // where C is RefSCMatrix and X and B are RefSCVector  // Put result (X) into array alpha  //////////////////////////////////////////////////////  int i, j, k;  int vect_dim = nocc*nvir;  double tmp1, tmp2;  double *ptr1, *ptr2;  double *norm = new double[dim]; // contains norms of vectors P[i], i=0,dim  Ref<SCMatrixKit> kit = SCMatrixKit::default_matrixkit();  RefSCDimension C_dim(new SCDimension(dim));  RefSCMatrix C(C_dim,C_dim,kit);  RefSCVector B(C_dim,kit);  RefSCVector X(C_dim,kit);  // Compute norms of vectors P[i] and put into norm  for (i=0; i<dim; i++) norm[i] = 0.0;  ptr1 = norm;  for (i=0; i<dim; i++) {    ptr2 = P[i];    for (j=0; j<vect_dim; j++) {      *ptr1 += *ptr2 * *ptr2;       ptr2++;       }    ptr1++;    }  for (i=0; i<dim; i++) norm[i] = sqrt(norm[i]);      // Construct matrix C  for (i=0; i<dim; i++) {    for (j=0; j<dim; j++) {      tmp1 = 0.0;      ptr1 = P[i];      ptr2 = AP[j];      for (k=0; k<vect_dim; k++) {        tmp1 -= *ptr1++ * *ptr2++;        }      if (i == j) {        ptr1 = P[i];        for (k=0; k<vect_dim; k++) {          tmp2 = *ptr1++;          tmp1 += tmp2*tmp2;          }        }      C->set_element(i,j,tmp1/(norm[i]*norm[j]));      }    }  // Construct vector B  B->set_element(0,norm[0]);  for (i=1; i<dim; i++) B->set_element(i,0.0);  // Compute X = inv(C)*B  X = C.i()*B;  // Put elements of X into alpha  for (i=0; i<dim; i++) {    alpha[i][0] = X->get_element(i)/norm[i];    }  delete[] norm;}////////////////////////////////////////////////////////////////////////////// Local Variables:// mode: c++// c-file-style: "CLJ-CONDENSED"// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -