📄 csgrade12.cc
字号:
//// csgrade12.cc// based on: csgrad.cc//// Copyright (C) 1996 Limit Point Systems, Inc.//// Author: Ida Nielsen <ida@kemi.aau.dk>// Maintainer: LPS//// This file is part of the SC Toolkit.//// The SC Toolkit is free software; you can redistribute it and/or modify// it under the terms of the GNU Library General Public License as published by// the Free Software Foundation; either version 2, or (at your option)// any later version.//// The SC Toolkit is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU Library General Public License for more details.//// You should have received a copy of the GNU Library General Public License// along with the SC Toolkit; see the file COPYING.LIB. If not, write to// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.//// The U.S. Government is granted a limited license as per AL 91-7.//#ifdef __GNUC__#pragma implementation#endif#include <math.h>#include <util/misc/formio.h>#include <chemistry/qc/basis/petite.h>#include <chemistry/qc/mbpt/bzerofast.h>#include <chemistry/qc/mbpt/csgrade12.h>#include <chemistry/qc/mbpt/distsh.h>#include <chemistry/qc/mbpt/util.h>using namespace std;using namespace sc;extern BiggestContribs biggest_ints_1;#define PRINT1Q 0/////////////////////////////////////////////////////////////////// Function iquicksort performs a quick sort (larger -> smaller) // of the integer data in item by the integer indices in index;// data in item remain unchanged/////////////////////////////////////////////////////////////////static voidiqs(int *item,int *index,int left,int right){ register int i,j; int x,y; i=left; j=right; x=item[index[(left+right)/2]]; do { while(item[index[i]]>x && i<right) i++; while(x>item[index[j]] && j>left) j--; if (i<=j) { if (item[index[i]] != item[index[j]]) { y=index[i]; index[i]=index[j]; index[j]=y; } i++; j--; } } while(i<=j); if (left<j) iqs(item,index,left,j); if (i<right) iqs(item,index,i,right);}static voidiquicksort(int *item,int *index,int n){ int i; if (n<=0) return; for (i=0; i<n; i++) { index[i] = i; } iqs(item,index,0,n-1); }CSGradErep12Qtr::CSGradErep12Qtr(int mythread_a, int nthread_a, int me_a, int nproc_a, const Ref<MemoryGrp> &mem_a, const Ref<MessageGrp> &msg_a, const Ref<ThreadLock> &lock_a, const Ref<GaussianBasisSet> &basis_a, const Ref<TwoBodyInt> &tbint_a, int nocc_a, double **scf_vector_a, double tol_a, int debug_a, int dynamic_a, int usep4){ msg = msg_a; mythread = mythread_a; nthread = nthread_a; lock = lock_a; basis = basis_a; tbint = tbint_a; nocc = nocc_a; me = me_a; nproc = nproc_a; tol = tol_a; mem = mem_a; scf_vector = scf_vector_a; debug = debug_a; dynamic_ = dynamic_a; usep4_ = usep4; aoint_computed = 0; timer = new RegionTimer();}CSGradErep12Qtr::~CSGradErep12Qtr(){}voidCSGradErep12Qtr::run(){ int P,Q,R,S; int p,q,r,s; int np,nq,nr,ns; int bf1,bf2,bf3,bf4; int p_offset,q_offset,r_offset,s_offset; int offset; int nfuncmax = basis->max_nfunction_in_shell(); int nshell = basis->nshell(); int nbasis = basis->nbasis(); double dtol = pow(2.0,tol); double *iqjs_ptr; double *iqrs_ptr, *iprs_ptr; double *c_pi, *c_qi; double tmpval; int i,j; double *iqjs_contrib; // local contributions to integral_iqjs double *iqjr_contrib; // local contributions to integral_iqjr const double *intbuf = tbint->buffer(); iqjs_contrib = mem->malloc_local_double(nbasis*nfuncmax); iqjr_contrib = mem->malloc_local_double(nbasis*nfuncmax); double *integral_iqrs; // quarter transformed two-el integrals lock->lock(); integral_iqrs = new double[ni*nbasis*nfuncmax*nfuncmax]; lock->unlock(); int work_per_thread = ((nshell*(nshell+1))/2)/(nproc*nthread); int print_interval = work_per_thread/100; int time_interval = work_per_thread/10; int print_index = 0; if (print_interval == 0) print_interval = 1; if (time_interval == 0) time_interval = 1; if (work_per_thread == 0) work_per_thread = 1; if (debug) { lock->lock(); ExEnv::outn() << scprintf("%d:%d: starting get_task loop",me,mythread) << endl; lock->unlock(); } // Use petite list for symmetry utilization Ref<PetiteList> p4list = tbint->integral()->petite_list(); DistShellPair shellpairs(msg,nthread,mythread,lock,basis); shellpairs.set_dynamic(dynamic_); shellpairs.set_debug(debug); if (debug) shellpairs.set_print_percent(1); S = 0; R = 0; while (shellpairs.get_task(S,R)) { ns = basis->shell(S).nfunction(); s_offset = basis->shell_to_function(S); nr = basis->shell(R).nfunction(); r_offset = basis->shell_to_function(R); if (debug > 1 && (print_index++)%print_interval == 0) { lock->lock(); ExEnv::outn() << scprintf("%d:%d: (PQ|%d %d) %d%%", me,mythread,R,S,(100*print_index)/work_per_thread) << endl; lock->unlock(); } if (debug > 1 && (print_index)%time_interval == 0) { lock->lock(); ExEnv::outn() << scprintf("timer for %d:%d:",me,mythread) << endl; timer->print(); lock->unlock(); } bzerofast(integral_iqrs, ni*nbasis*nfuncmax*nfuncmax); for (Q=0; Q<nshell; Q++) { nq = basis->shell(Q).nfunction(); q_offset = basis->shell_to_function(Q); for (P=0; P<=Q; P++) { np = basis->shell(P).nfunction(); p_offset = basis->shell_to_function(P); // check if symmetry unique and compute degeneracy int deg; if (usep4_) deg = p4list->in_p4(P,Q,R,S); else deg = 1; double symfac = (double) deg; if (deg == 0) continue; if (tbint->log2_shell_bound(P,Q,R,S) < tol) { continue; // skip ereps less than tol } aoint_computed++; timer->enter("erep"); tbint->compute_shell(P,Q,R,S); timer->exit("erep"); timer->enter("1. q.t."); // Begin first quarter transformation; // generate (iq|rs) for i active offset = nr*ns*nbasis; const double *pqrs_ptr = intbuf; for (bf1 = 0; bf1 < np; bf1++) { p = p_offset + bf1; for (bf2 = 0; bf2 < nq; bf2++) { q = q_offset + bf2; if (q < p) { pqrs_ptr = &intbuf[ns*nr*(bf2+1 + nq*bf1)]; continue; // skip to next q value } for (bf3 = 0; bf3 < nr; bf3++) { r = r_offset + bf3; for (bf4 = 0; bf4 < ns; bf4++) { s = s_offset + bf4; if (s < r) { pqrs_ptr++; continue; // skip to next bf4 value } if (fabs(*pqrs_ptr) > dtol) { iprs_ptr = &integral_iqrs[bf4 + ns*(p + nbasis*bf3)]; iqrs_ptr = &integral_iqrs[bf4 + ns*(q + nbasis*bf3)]; c_qi = &scf_vector[q][i_offset]; c_pi = &scf_vector[p][i_offset]; tmpval = *pqrs_ptr; // multiply each integral by its symmetry degeneracy factor tmpval *= symfac; for (i=0; i<ni; i++) { *iprs_ptr += *c_qi++*tmpval; iprs_ptr += offset; if (p != q) { *iqrs_ptr += *c_pi++*tmpval; iqrs_ptr += offset; } } // exit i loop } // endif pqrs_ptr++; } // exit bf4 loop } // exit bf3 loop } // exit bf2 loop } // exit bf1 loop // end of first quarter transformation timer->exit("1. q.t."); } // exit P loop } // exit Q loop#if PRINT1Q { lock->lock(); double *tmp = integral_iqrs; for (int i = 0; i<ni; i++) { for (int r = 0; r<nr; r++) { for (int q = 0; q<nbasis; q++) { for (int s = 0; s<ns; s++) { printf("1Q: (%d %d|%d %d) = %12.8f\n", i,q,r+r_offset,s+s_offset,*tmp); tmp++; } } } } lock->unlock(); }#endif#if PRINT_BIGGEST_INTS { lock->lock(); double *tmp = integral_iqrs; for (int i = 0; i<ni; i++) { for (int r = 0; r<nr; r++) { for (int q = 0; q<nbasis; q++) { for (int s = 0; s<ns; s++) { if (i+i_offset==104) { biggest_ints_1.insert(*tmp,i+i_offset,q,r+r_offset,s+s_offset); } tmp++; } } } } lock->unlock(); }#endif timer->enter("2. q.t."); // Begin second quarter transformation; // generate (iq|jr) for i active and j active or frozen for (i=0; i<ni; i++) { for (j=0; j<nocc; j++) { bzerofast(iqjs_contrib, nbasis*nfuncmax); bzerofast(iqjr_contrib, nbasis*nfuncmax); for (bf1=0; bf1<ns; bf1++) { s = s_offset + bf1; double *c_sj = &scf_vector[s][j]; double *iqjr_ptr = iqjr_contrib; for (bf2=0; bf2<nr; bf2++) { r = r_offset + bf2; if (r > s) { break; // skip to next bf1 value } double c_rj = scf_vector[r][j]; iqjs_ptr = &iqjs_contrib[bf1*nbasis]; iqrs_ptr = &integral_iqrs[bf1 + ns*nbasis*(bf2 + nr*i)]; for (q=0; q<nbasis; q++) { *iqjs_ptr++ += c_rj * *iqrs_ptr; if (r != s) *iqjr_ptr += *c_sj * *iqrs_ptr; iqjr_ptr++; iqrs_ptr += ns; } // exit q loop } // exit bf2 loop } // exit bf1 loop // We now have contributions to iqjs and iqjr for one pair i,j, // all q, r in R and s in S; send iqjs and iqjr to the node // (ij_proc) which is going to have this ij pair int ij_proc = (i*nocc + j)%nproc; int ij_index = (i*nocc + j)/nproc; // Sum the iqjs_contrib to the appropriate place int ij_offset = nbasis*(s_offset + nbasis*ij_index); mem->sum_reduction_on_node(iqjs_contrib, ij_offset, ns*nbasis, ij_proc); ij_offset = nbasis*(r_offset + nbasis*ij_index); mem->sum_reduction_on_node(iqjr_contrib, ij_offset, nr*nbasis, ij_proc); } // exit j loop } // exit i loop // end of second quarter transformation timer->exit("2. q.t."); } // exit while get_task if (debug) { lock->lock(); ExEnv::outn() << scprintf("%d:%d: done with get_task loop",me,mythread) << endl; lock->unlock(); } lock->lock(); delete[] integral_iqrs; mem->free_local_double(iqjs_contrib); mem->free_local_double(iqjr_contrib); lock->unlock();}////////////////////////////////////////////////////////////////////////////// Local Variables:// mode: c++// c-file-style: "CLJ-CONDENSED"// End:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -