⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 comp_grt.cc

📁 大型并行量子化学软件;支持密度泛函(DFT)。可以进行各种量子化学计算。支持CHARMM并行计算。非常具有应用价值。
💻 CC
📖 第 1 页 / 共 2 页
字号:
//// comp_grt.cc//// Copyright (C) 2001 Edward Valeev//// Author: Edward Valeev <edward.valeev@chemistry.gatech.edu>// Maintainer: EV//// This file is part of the SC Toolkit.//// The SC Toolkit is free software; you can redistribute it and/or modify// it under the terms of the GNU Library General Public License as published by// the Free Software Foundation; either version 2, or (at your option)// any later version.//// The SC Toolkit is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU Library General Public License for more details.//// You should have received a copy of the GNU Library General Public License// along with the SC Toolkit; see the file COPYING.LIB.  If not, write to// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.//// The U.S. Government is granted a limited license as per AL 91-7.//#include <stdarg.h>#include <util/misc/formio.h>#include <chemistry/qc/cints/macros.h>#include <chemistry/qc/cints/grt.h>#include <chemistry/qc/cints/tform.h>#ifdef DMALLOC#include <dmalloc.h>#endifusing namespace std;using namespace sc;static inline voidswtch(GaussianBasisSet* &i,GaussianBasisSet* &j){  GaussianBasisSet *tmp;  tmp = i;  i = j;  j = tmp;}static inline voidpswtch(void**i,void**j){  void*tmp;  tmp = *i;  *i = *j;  *j = tmp;}static inline voidiswtch(int *i,int *j){  int tmp;  tmp = *i;  *i = *j;  *j = tmp;}static voidfail(){  ExEnv::errn() << scprintf("failing module:\n%s",__FILE__) << endl;  abort();}voidGRTCints::compute_quartet(int *psh1, int *psh2, int *psh3, int *psh4){#ifdef EREP_TIMING  char section[30];#endif  GaussianBasisSet *pbs1=bs1_.pointer();  GaussianBasisSet *pbs2=bs2_.pointer();  GaussianBasisSet *pbs3=bs3_.pointer();  GaussianBasisSet *pbs4=bs4_.pointer();  int int_expweight1; // For exponent weighted contractions.  int int_expweight2; // For exponent weighted contractions.  int int_expweight3; // For exponent weighted contractions.  int int_expweight4; // For exponent weighted contractions.  int size;  int ii;  int size1, size2, size3, size4;  int tam1,tam2,tam3,tam4;  int i,j,k,l;  int pi, pj, pk, pl;  int gci, gcj, gck, gcl;  int sh1,sh2,sh3,sh4;              // Shell indices (may be permuted)  int osh1,osh2,osh3,osh4;          // Shell indices (never permuted)  int am1,am2,am3,am4,am12,am34;  int minam1,minam2,minam3,minam4;  int redundant_index;  int e12,e13e24,e34;  int p12,p34,p13p24;  int eAB;#ifdef DMALLOC  /*--- Test heap before ---*/  int heapstate;  heapstate = dmalloc_verify(target_ints_buffer_[0]);  if (heapstate == DMALLOC_VERIFY_ERROR)    fail();  heapstate = dmalloc_verify(cart_ints_[0]);  if (heapstate == DMALLOC_VERIFY_ERROR)    fail();  heapstate = dmalloc_verify(sphharm_ints_);  if (heapstate == DMALLOC_VERIFY_ERROR)    fail();  heapstate = dmalloc_verify(perm_ints_);  if (heapstate == DMALLOC_VERIFY_ERROR)    fail();  heapstate = dmalloc_verify(tformbuf_);  if (heapstate == DMALLOC_VERIFY_ERROR)    fail();#endif  osh1 = sh1 = *psh1;  osh2 = sh2 = *psh2;  osh3 = sh3 = *psh3;  osh4 = sh4 = *psh4;  /* Test the arguments to make sure that they are sensible. */  if (   sh1 < 0 || sh1 >= bs1_->nbasis()	 || sh2 < 0 || sh2 >= bs2_->nbasis()	 || sh3 < 0 || sh3 >= bs3_->nbasis()	 || sh4 < 0 || sh4 >= bs4_->nbasis() ) {    ExEnv::errn() << scprintf("compute_erep has been incorrectly used\n");    ExEnv::errn() << scprintf("shells (bounds): %d (%d), %d (%d), %d (%d), %d (%d)\n",            sh1,bs1_->nbasis()-1,            sh2,bs2_->nbasis()-1,            sh3,bs3_->nbasis()-1,            sh4,bs4_->nbasis()-1);    fail();  }  /* Set up pointers to the current shells. */  int_shell1_ = &bs1_->shell(sh1);  int_shell2_ = &bs2_->shell(sh2);  int_shell3_ = &bs3_->shell(sh3);  int_shell4_ = &bs4_->shell(sh4);  /* Compute the maximum angular momentum on each centers to   * determine the most efficient way to invoke the building and shifting   * routines.  The minimum angular momentum will be computed at the   * same time. */  minam1 = int_shell1_->min_am();  minam2 = int_shell2_->min_am();  minam3 = int_shell3_->min_am();  minam4 = int_shell4_->min_am();  am1 = int_shell1_->max_am();  am2 = int_shell2_->max_am();  am3 = int_shell3_->max_am();  am4 = int_shell4_->max_am();  am12 = am1 + am2;  am34 = am3 + am4;  // This condition being true is guaranteed by the constructor of IntegralCints  //if (minam1 != am1 ||  //    minam2 != am2 ||  //    minam3 != am3 ||  //    minam4 != am4 ) {  //  ExEnv::errn() << scprintf("Int2eCints::comp_eri() cannot yet handle fully general contractions") << endl;  //  fail();  //}  /* See if need to transform to spherical harmonics */  bool need_cart2sph_transform = false;  if (int_shell1_->has_pure() ||      int_shell2_->has_pure() ||      int_shell3_->has_pure() ||      int_shell4_->has_pure())    need_cart2sph_transform = true;        /* See if contraction quartets need to be resorted into a shell quartet */  bool need_sort_to_shell_quartet = false;  int num_gen_shells = 0;  if (int_shell1_->ncontraction() > 1)    num_gen_shells++;  if (int_shell2_->ncontraction() > 1)    num_gen_shells++;  if (int_shell3_->ncontraction() > 1)    num_gen_shells++;  if (int_shell4_->ncontraction() > 1)    num_gen_shells++;  if (am12+am34 && num_gen_shells >= 1)    need_sort_to_shell_quartet = true;  /* Unique integrals are needed only ?*/  bool need_unique_ints_only = false;  if (!redundant_) {    e12 = 0;    if (int_shell1_ == int_shell2_ && int_shell1_->nfunction()>1)      e12 = 1;    e34 = 0;    if (int_shell3_ == int_shell4_ && int_shell3_->nfunction()>1)      e34 = 1;    e13e24 = 0;    if (int_shell1_ == int_shell3_ && int_shell2_ == int_shell4_ && int_shell1_->nfunction()*int_shell2_->nfunction()>1)      e13e24 = 1;    if ( e12 || e34 || e13e24 )      need_unique_ints_only = true;  }    #ifdef EREP_TIMING  sprintf(section,"erep am=%02d",am12+am34);  tim_enter(section);  tim_enter("setup");#endif  /* Convert the integral to the most efficient form. */  p12 = 0;  p34 = 0;  p13p24 = 0;  if (am2 > am1) {    p12 = 1;    iswtch(&am1,&am2);iswtch(&sh1,&sh2);iswtch(psh1,psh2);    iswtch(&minam1,&minam2);    pswtch((void**)&int_shell1_,(void**)&int_shell2_);    swtch(pbs1,pbs2);  }  if (am4 > am3) {    p34 = 1;    iswtch(&am3,&am4);iswtch(&sh3,&sh4);iswtch(psh3,psh4);    iswtch(&minam3,&minam4);    pswtch((void**)&int_shell3_,(void**)&int_shell4_);    swtch(pbs3,pbs4);  }  if (am12 > am34) {    p13p24 = 1;    iswtch(&am1,&am3);iswtch(&sh1,&sh3);iswtch(psh1,psh3);    iswtch(&am2,&am4);iswtch(&sh2,&sh4);iswtch(psh2,psh4);    iswtch(&am12,&am34);    iswtch(&minam1,&minam3);    iswtch(&minam2,&minam4);    pswtch((void**)&int_shell1_,(void**)&int_shell3_);    swtch(pbs1,pbs3);    pswtch((void**)&int_shell2_,(void**)&int_shell4_);    swtch(pbs2,pbs4);  }  bool shells_were_permuted = (p12||p34||p13p24);  /* If the centers were permuted, then the int_expweighted variable may   * need to be changed. */  if (p12) {    iswtch(&int_expweight1,&int_expweight2);  }  if (p34) {    iswtch(&int_expweight3,&int_expweight4);  }  if (p13p24) {    iswtch(&int_expweight1,&int_expweight3);    iswtch(&int_expweight2,&int_expweight4);  }  /* Compute the shell sizes. */  size1 = int_shell1_->ncartesian();  size2 = int_shell2_->ncartesian();  size3 = int_shell3_->ncartesian();  size4 = int_shell4_->ncartesian();  size = size1*size2*size3*size4;  /* Compute center data for Libint */  int ctr1 = pbs1->shell_to_center(sh1);  int ctr2 = pbs2->shell_to_center(sh2);  int ctr3 = pbs3->shell_to_center(sh3);  int ctr4 = pbs4->shell_to_center(sh4);  for(i=0;i<3;i++) {    double A = pbs1->r(ctr1,i);    double B = pbs2->r(ctr2,i);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -