⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 macros.h

📁 大型并行量子化学软件;支持密度泛函(DFT)。可以进行各种量子化学计算。支持CHARMM并行计算。非常具有应用价值。
💻 H
字号:
//// macros.h//// Copyright (C) 2001 Edward Valeev//// Author: Edward Valeev <edward.valeev@chemistry.gatech.edu>// Maintainer: EV//// This file is part of the SC Toolkit.//// The SC Toolkit is free software; you can redistribute it and/or modify// it under the terms of the GNU Library General Public License as published by// the Free Software Foundation; either version 2, or (at your option)// any later version.//// The SC Toolkit is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU Library General Public License for more details.//// You should have received a copy of the GNU Library General Public License// along with the SC Toolkit; see the file COPYING.LIB.  If not, write to// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.//// The U.S. Government is granted a limited license as per AL 91-7.///* True if the integral is nonzero. */#define INT_NONZERO(x) (((x)< -1.0e-15)||((x)> 1.0e-15))/* Computes an index to a Cartesian function within a shell given * am = total angular momentum * i = the exponent of x (i is used twice in the macro--beware side effects) * j = the exponent of y * formula: (am - i + 1)*(am - i)/2 + am - i - j unless i==am, then 0 * The following loop will generate indices in the proper order: *  cartindex = 0; *  for (i=am; i>=0; i--) { *    for (j=am-i; j>=0; j--) { *      do_it_with(cartindex); *      cartindex++; *      } *    } */#define INT_CARTINDEX(am,i,j) (((i) == (am))? 0 : (((((am) - (i) + 1)*((am) - (i)))>>1) + (am) - (i) - (j)))/* This sets up the above loop over cartesian exponents as follows * FOR_CART(i,j,k,am) *   Stuff using i,j,k. *   END_FOR_CART */#define FOR_CART(i,j,k,am) for((i)=(am);(i)>=0;(i)--) {\                           for((j)=(am)-(i);(j)>=0;(j)--) \                           { (k) = (am) - (i) - (j);#define END_FOR_CART }}/* This sets up a loop over all of the generalized contractions * and all of the cartesian exponents. * gc is the number of the gen con * index is the index within the current gen con. * i,j,k are the angular momentum for x,y,z * sh is the shell pointer */#define FOR_GCCART(gc,index,i,j,k,sh)\    for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\    (index)=0;\    FOR_CART(i,j,k,(sh)->type[gc].am)#define FOR_GCCART_GS(gc,index,i,j,k,sh)\    for ((gc)=0; (gc)<(sh)->ncontraction(); (gc)++) {\    (index)=0;\    FOR_CART(i,j,k,(sh)->am(gc))#define END_FOR_GCCART(index)\    (index)++;\    END_FOR_CART\    }#define END_FOR_GCCART_GS(index)\    (index)++;\    END_FOR_CART\    }/* These are like the above except no index is kept track of. */#define FOR_GCCART2(gc,i,j,k,sh)\    for ((gc)=0; (gc)<(sh)->ncon; (gc)++) {\    FOR_CART(i,j,k,(sh)->type[gc].am)#define END_FOR_GCCART2\    END_FOR_CART\    }/* These are used to loop over shells, given the centers structure * and the center index, and shell index. */#define FOR_SHELLS(c,i,j) for((i)=0;(i)<(c)->n;i++) {\                          for((j)=0;(j)<(c)->center[(i)].basis.n;j++) {#define END_FOR_SHELLS }}/* Computes the number of Cartesian function in a shell given * am = total angular momentum * formula: (am*(am+1))/2 + am+1; */#define INT_NCART(am) ((am>=0)?((((am)+2)*((am)+1))>>1):0)/* Like INT_NCART, but only for nonnegative arguments. */#define INT_NCART_NN(am) ((((am)+2)*((am)+1))>>1)/* For a given ang. mom., am, with n cartesian functions, compute the * number of cartesian functions for am+1 or am-1 */#define INT_NCART_DEC(am,n) ((n)-(am)-1)#define INT_NCART_INC(am,n) ((n)+(am)+2)/* Computes the number of pure angular momentum functions in a shell * given am = total angular momentum */#define INT_NPURE(am) (2*(am)+1)/* Computes the number of functions in a shell given * pu = pure angular momentum boolean * am = total angular momentum */#define INT_NFUNC(pu,am) ((pu)?INT_NPURE(am):INT_NCART(am))/* Given a centers pointer and a shell number, this evaluates the * pointer to that shell. */#define INT_SH(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]])/* Given a centers pointer and a shell number, get the angular momentum * of that shell. */#define INT_SH_AM(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.am)/* Given a centers pointer and a shell number, get pure angular momentum * boolean for that shell. */#define INT_SH_PU(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].type.puream)/* Given a centers pointer, a center number, and a shell number, * get the angular momentum of that shell. */#define INT_CE_SH_AM(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.am)/* Given a centers pointer, a center number, and a shell number, * get pure angular momentum boolean for that shell. */#define INT_CE_SH_PU(c,a,s) ((c)->center[(a)].basis.shell[(s)].type.puream)/* Given a centers pointer and a shell number, compute the number * of functions in that shell. *//* #define INT_SH_NFUNC(c,s) INT_NFUNC(INT_SH_PU(c,s),INT_SH_AM(c,s)) */#define INT_SH_NFUNC(c,s) ((c)->center[(c)->center_num[s]].basis.shell[(c)->shell_num[s]].nfunc)/* These macros assist in looping over the unique integrals * in a shell quartet.  The exy variables are booleans giving * information about the equivalence between shells x and y.  The nx * variables give the number of functions in each shell, x. The * i,j,k are the current values of the looping indices for shells 1, 2, and 3. * The macros return the maximum index to be included in a summation * over indices 1, 2, 3, and 4. * These macros require canonical integrals.  This requirement comes * from the need that integrals of the shells (1 2|2 1) are not * used.  The integrals (1 2|1 2) must be used with these macros to * get the right nonredundant integrals. */#define INT_MAX1(n1) ((n1)-1)#define INT_MAX2(e12,i,n2) ((e12)?(i):((n2)-1))#define INT_MAX3(e13e24,i,n3) ((e13e24)?(i):((n3)-1))#define INT_MAX4(e13e24,e34,i,j,k,n4) \  ((e34)?(((e13e24)&&((k)==(i)))?(j):(k)) \        :((e13e24)&&((k)==(i)))?(j):(n4)-1)/* A note on integral symmetries: *  There are 15 ways of having equivalent indices. *  There are 8 of these which are important for determining the *  nonredundant integrals (that is there are only 8 ways of counting *  the number of nonredundant integrals in a shell quartet) * Integral type   Integral    Counting Type *     1           (1 2|3 4)      1 *     2           (1 1|3 4)      2 *     3           (1 2|1 4)       ->1 *     4           (1 2|3 1)       ->1 *     5           (1 1|1 4)      3 *     6           (1 1|3 1)       ->2 *     7           (1 2|1 1)       ->5 *     8           (1 1|1 1)      4 *     9           (1 2|2 4)       ->1 *    10           (1 2|3 2)       ->1 *    11           (1 2|3 3)      5 *    12           (1 1|3 3)      6 *    13           (1 2|1 2)      7 *    14           (1 2|2 1)      8    reduces to 7 thru canonicalization *    15           (1 2|2 2)       ->5 */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -