⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tchf.cc

📁 大型并行量子化学软件;支持密度泛函(DFT)。可以进行各种量子化学计算。支持CHARMM并行计算。非常具有应用价值。
💻 CC
字号:
//// tchf.cc --- implementation of the two-configuration Hartree-Fock SCF class//// Copyright (C) 1997 Limit Point Systems, Inc.//// Author: Edward Seidl <seidl@janed.com>// Maintainer: LPS//// This file is part of the SC Toolkit.//// The SC Toolkit is free software; you can redistribute it and/or modify// it under the terms of the GNU Library General Public License as published by// the Free Software Foundation; either version 2, or (at your option)// any later version.//// The SC Toolkit is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU Library General Public License for more details.//// You should have received a copy of the GNU Library General Public License// along with the SC Toolkit; see the file COPYING.LIB.  If not, write to// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.//// The U.S. Government is granted a limited license as per AL 91-7.//#ifdef __GNUC__#pragma implementation#endif#include <math.h>#include <util/misc/timer.h>#include <util/misc/formio.h>#include <util/state/stateio.h>#include <chemistry/qc/basis/petite.h>#include <chemistry/qc/scf/tchf.h>#include <chemistry/qc/scf/lgbuild.h>#include <chemistry/qc/scf/ltbgrad.h>#include <chemistry/qc/scf/tchftmpl.h>using namespace std;using namespace sc;///////////////////////////////////////////////////////////////////////////// TCHFstatic ClassDesc TCHF_cd(  typeid(TCHF),"TCHF",1,"public TCSCF",  0, create<TCHF>, create<TCHF>);TCHF::TCHF(StateIn& s) :  SavableState(s),  TCSCF(s){}TCHF::TCHF(const Ref<KeyVal>& keyval) :  TCSCF(keyval){}TCHF::~TCHF(){}voidTCHF::save_data_state(StateOut& s){  TCSCF::save_data_state(s);}intTCHF::value_implemented() const{  return 1;}intTCHF::gradient_implemented() const{  return 1;}voidTCHF::print(ostream&o) const{  TCSCF::print(o);}//////////////////////////////////////////////////////////////////////////////voidTCHF::ao_fock(double accuracy){  Ref<PetiteList> pl = integral()->petite_list(basis());    // calculate G.  First transform cl_dens_diff_ to the AO basis, then  // scale the off-diagonal elements by 2.0  RefSymmSCMatrix da = pl->to_AO_basis(cl_dens_diff_);  RefSymmSCMatrix db = da.copy();  RefSymmSCMatrix oda = pl->to_AO_basis(op_densa_diff_);  RefSymmSCMatrix odb = pl->to_AO_basis(op_densb_diff_);  da.accumulate(oda);  db.accumulate(odb);  da->scale(2.0);  da->scale_diagonal(0.5);    db->scale(2.0);  db->scale_diagonal(0.5);    oda->scale(2.0);  oda->scale_diagonal(0.5);    odb->scale(2.0);  odb->scale_diagonal(0.5);    // now try to figure out the matrix specialization we're dealing with  // if we're using Local matrices, then there's just one subblock, or  // see if we can convert G and P to local matrices  if (local_ || local_dens_) {    // grab the data pointers from the G and P matrices    double *gmata, *gmatb, *kmata, *kmatb, *pmata, *pmatb, *opmata, *opmatb;    RefSymmSCMatrix gatmp = get_local_data(ao_gmata_, gmata, SCF::Accum);    RefSymmSCMatrix patmp = get_local_data(da, pmata, SCF::Read);    RefSymmSCMatrix gbtmp = get_local_data(ao_gmatb_, gmatb, SCF::Accum);    RefSymmSCMatrix pbtmp = get_local_data(db, pmatb, SCF::Read);    RefSymmSCMatrix katmp = get_local_data(ao_ka_, kmata, SCF::Accum);    RefSymmSCMatrix opatmp = get_local_data(oda, opmata, SCF::Read);    RefSymmSCMatrix kbtmp = get_local_data(ao_kb_, kmatb, SCF::Accum);    RefSymmSCMatrix opbtmp = get_local_data(odb, opmatb, SCF::Read);        signed char * pmax = init_pmax(pmata);    signed char * pmaxb = init_pmax(pmatb);      int i;    for (i=0; i < i_offset(basis()->nshell()); i++) {      if (pmaxb[i] > pmax[i])        pmax[i]=pmaxb[i];    }        delete[] pmaxb;    //      LocalTCContribution lclc(gmata, pmata, gmatb, pmatb,//                               kmata, opmata, kmatb, opmatb);//      LocalGBuild<LocalTCContribution>//        gb(lclc, tbi_, pl, basis(), scf_grp_, pmax,//           desired_value_accuracy()/100.0);//      gb.run();    int nthread = threadgrp_->nthread();    LocalGBuild<LocalTCContribution> **gblds =      new LocalGBuild<LocalTCContribution>*[nthread];    LocalTCContribution **conts = new LocalTCContribution*[nthread];        double **gmatas = new double*[nthread];    gmatas[0] = gmata;    double **gmatbs = new double*[nthread];    gmatbs[0] = gmatb;    double **kmatas = new double*[nthread];    kmatas[0] = kmata;    double **kmatbs = new double*[nthread];    kmatbs[0] = kmatb;        Ref<GaussianBasisSet> bs = basis();    int ntri = i_offset(bs->nbasis());    double gmat_accuracy = accuracy;    if (min_orthog_res() < 1.0) { gmat_accuracy *= min_orthog_res(); }    for (i=0; i < nthread; i++) {      if (i) {        gmatas[i] = new double[ntri];        memset(gmatas[i], 0, sizeof(double)*ntri);        gmatbs[i] = new double[ntri];        memset(gmatbs[i], 0, sizeof(double)*ntri);        kmatas[i] = new double[ntri];        memset(kmatas[i], 0, sizeof(double)*ntri);        kmatbs[i] = new double[ntri];        memset(kmatbs[i], 0, sizeof(double)*ntri);      }      conts[i] = new LocalTCContribution(gmatas[i], pmata, gmatbs[i], pmatb,                                         kmatas[i], opmata, kmatbs[i], opmatb);      gblds[i] = new LocalGBuild<LocalTCContribution>(*conts[i], tbis_[i],        pl, bs, scf_grp_, pmax, gmat_accuracy, nthread, i        );      threadgrp_->add_thread(i, gblds[i]);    }    tim_enter("start thread");    if (threadgrp_->start_threads() < 0) {      ExEnv::err0() << indent           << "TCHF: error starting threads" << endl;      abort();    }    tim_exit("start thread");    tim_enter("stop thread");    if (threadgrp_->wait_threads() < 0) {      ExEnv::err0() << indent           << "TCHF: error waiting for threads" << endl;      abort();    }    tim_exit("stop thread");          double tnint=0;    for (i=0; i < nthread; i++) {      tnint += gblds[i]->tnint;      if (i) {        for (int j=0; j < ntri; j++) {          gmata[j] += gmatas[i][j];          gmatb[j] += gmatbs[i][j];          kmata[j] += kmatas[i][j];          kmatb[j] += kmatbs[i][j];        }        delete[] gmatas[i];        delete[] gmatbs[i];        delete[] kmatas[i];        delete[] kmatbs[i];      }      delete gblds[i];      delete conts[i];    }    delete[] gmatas;    delete[] gmatbs;    delete[] kmatas;    delete[] kmatbs;    delete[] gblds;    delete[] conts;    delete[] pmax;    // if we're running on multiple processors, then sum the G matrices    if (scf_grp_->n() > 1) {      scf_grp_->sum(gmata, i_offset(basis()->nbasis()));      scf_grp_->sum(gmatb, i_offset(basis()->nbasis()));      scf_grp_->sum(kmata, i_offset(basis()->nbasis()));      scf_grp_->sum(kmatb, i_offset(basis()->nbasis()));    }        // if we're running on multiple processors, or we don't have local    // matrices, then accumulate gtmp back into G    if (!local_ || scf_grp_->n() > 1) {      ao_gmata_->convert_accumulate(gatmp);      ao_gmatb_->convert_accumulate(gbtmp);      ao_ka_->convert_accumulate(katmp);      ao_kb_->convert_accumulate(kbtmp);    }  }  // for now quit  else {    ExEnv::err0() << indent << "Cannot yet use anything but Local matrices\n";    abort();  }    da=0;  db=0;  oda=0;  odb=0;  // now symmetrize the skeleton G matrix, placing the result in dd  RefSymmSCMatrix skel_gmat = ao_gmata_.copy();  skel_gmat.scale(1.0/(double)pl->order());  pl->symmetrize(skel_gmat,focka_.result_noupdate());    skel_gmat = ao_gmatb_.copy();  skel_gmat.scale(1.0/(double)pl->order());  pl->symmetrize(skel_gmat,fockb_.result_noupdate());    skel_gmat = ao_ka_.copy();  skel_gmat.scale(1.0/(double)pl->order());  pl->symmetrize(skel_gmat,ka_.result_noupdate());    skel_gmat = ao_kb_.copy();  skel_gmat.scale(1.0/(double)pl->order());  pl->symmetrize(skel_gmat,kb_.result_noupdate());    // Fa = H+Ga  focka_.result_noupdate().accumulate(hcore_);  // Fb = H+Gb  fockb_.result_noupdate().accumulate(hcore_);  RefSymmSCMatrix ddh = hcore_.clone();  ddh.assign(0.0);  accumddh_->accum(ddh);  focka_.result_noupdate().accumulate(ddh);  fockb_.result_noupdate().accumulate(ddh);  ka_.result_noupdate().accumulate(ddh);  kb_.result_noupdate().accumulate(ddh);  ddh=0;  focka_.computed()=1;  fockb_.computed()=1;  ka_.computed()=1;  kb_.computed()=1;}/////////////////////////////////////////////////////////////////////////////voidTCHF::two_body_energy(double &ec, double &ex){  ExEnv::err0() << indent       << "TCHF:two_body_energy not implemented"       << endl;  abort();    tim_enter("tchf e2");  ec = 0.0;  ex = 0.0;  if (local_ || local_dens_) {    Ref<PetiteList> pl = integral()->petite_list(basis());    // grab the data pointers from the G and P matrices    double *pmata, *pmatb, *spmata, *spmatb;    tim_enter("local data");    RefSymmSCMatrix densa = alpha_density();    RefSymmSCMatrix densb = beta_density();    RefSymmSCMatrix densc = densb.clone();    so_density(densc, 2.0);    densc.scale(-2.0);    RefSymmSCMatrix sdensa = densa.copy();    sdensa.accumulate(densc);        RefSymmSCMatrix sdensb = densb.copy();    sdensb.accumulate(densc);    densc=0;        densa = pl->to_AO_basis(densa);    densb = pl->to_AO_basis(densb);    sdensa = pl->to_AO_basis(sdensa);    sdensb = pl->to_AO_basis(sdensb);        densa->scale(2.0);    densa->scale_diagonal(0.5);    densb->scale(2.0);    densb->scale_diagonal(0.5);    sdensa->scale(2.0);    sdensa->scale_diagonal(0.5);    sdensb->scale(2.0);    sdensb->scale_diagonal(0.5);    RefSymmSCMatrix ptmpa = get_local_data(densa, pmata, SCF::Read);    RefSymmSCMatrix ptmpb = get_local_data(densb, pmatb, SCF::Read);    RefSymmSCMatrix sptmpa = get_local_data(sdensa, spmata, SCF::Read);    RefSymmSCMatrix sptmpb = get_local_data(sdensb, spmatb, SCF::Read);    tim_exit("local data");    // initialize the two electron integral classes    Ref<TwoBodyInt> tbi = integral()->electron_repulsion();    tbi->set_integral_storage(0);    tim_enter("init pmax");    signed char * pmax = init_pmax(pmata);    tim_exit("init pmax");      LocalTCEnergyContribution lclc(pmata,pmatb,spmata,spmatb);    LocalGBuild<LocalTCEnergyContribution>      gb(lclc, tbi, pl, basis(), scf_grp_, pmax,         desired_value_accuracy()/100.0);    gb.run();    delete[] pmax;    printf("%20.10f %20.10f\n", lclc.eca, lclc.exa);    printf("%20.10f %20.10f\n", lclc.ecb, lclc.exb);    printf("%20.10f %20.10f\n", lclc.ecab, lclc.exab);      }  else {    ExEnv::err0() << indent << "Cannot yet use anything but Local matrices\n";    abort();  }  tim_exit("tchf e2");}/////////////////////////////////////////////////////////////////////////////voidTCHF::two_body_deriv(double * tbgrad){  Ref<SCElementMaxAbs> m = new SCElementMaxAbs;  cl_dens_.element_op(m.pointer());  double pmax = m->result();  m=0;  // now try to figure out the matrix specialization we're dealing with.  // if we're using Local matrices, then there's just one subblock, or  // see if we can convert P to local matrices  if (local_ || local_dens_) {    // grab the data pointers from the P matrices    double *pmat, *pmata, *pmatb;    RefSymmSCMatrix ptmp = get_local_data(cl_dens_, pmat, SCF::Read);    RefSymmSCMatrix patmp = get_local_data(op_densa_, pmata, SCF::Read);    RefSymmSCMatrix pbtmp = get_local_data(op_densb_, pmatb, SCF::Read);      LocalTCGradContribution l(pmat,pmata,pmatb,ci1_,ci2_);    Ref<TwoBodyDerivInt> tbi = integral()->electron_repulsion_deriv();    Ref<PetiteList> pl = integral()->petite_list();    LocalTBGrad<LocalTCGradContribution> tb(l, tbi, pl, basis(), scf_grp_,                                            tbgrad, pmax, desired_gradient_accuracy());    tb.run();    scf_grp_->sum(tbgrad,3 * basis()->molecule()->natom());  }  // for now quit  else {    ExEnv::err0() << indent         << "TCHF::two_body_deriv: can't do gradient yet\n";    abort();  }}/////////////////////////////////////////////////////////////////////////////// Local Variables:// mode: c++// c-file-style: "ETS"// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -