⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 uhf.cc

📁 大型并行量子化学软件;支持密度泛函(DFT)。可以进行各种量子化学计算。支持CHARMM并行计算。非常具有应用价值。
💻 CC
字号:
//// uhf.cc --- implementation of the unrestricted Hartree-Fock class//// Copyright (C) 1996 Limit Point Systems, Inc.//// Author: Edward Seidl <seidl@janed.com>// Maintainer: LPS//// This file is part of the SC Toolkit.//// The SC Toolkit is free software; you can redistribute it and/or modify// it under the terms of the GNU Library General Public License as published by// the Free Software Foundation; either version 2, or (at your option)// any later version.//// The SC Toolkit is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU Library General Public License for more details.//// You should have received a copy of the GNU Library General Public License// along with the SC Toolkit; see the file COPYING.LIB.  If not, write to// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.//// The U.S. Government is granted a limited license as per AL 91-7.//#ifdef __GNUC__#pragma implementation#endif#include <math.h>#include <util/misc/timer.h>#include <util/misc/formio.h>#include <util/state/stateio.h>#include <chemistry/qc/basis/petite.h>#include <chemistry/qc/scf/uhf.h>#include <chemistry/qc/scf/lgbuild.h>#include <chemistry/qc/scf/uhftmpl.h>using namespace std;using namespace sc;///////////////////////////////////////////////////////////////////////////// UHFstatic ClassDesc UHF_cd(  typeid(UHF),"UHF",1,"public UnrestrictedSCF",  0, create<UHF>, create<UHF>);UHF::UHF(StateIn& s) :  SavableState(s),  UnrestrictedSCF(s){}UHF::UHF(const Ref<KeyVal>& keyval) :  UnrestrictedSCF(keyval){}UHF::~UHF(){}voidUHF::save_data_state(StateOut& s){  UnrestrictedSCF::save_data_state(s);}intUHF::value_implemented() const{  return 1;}intUHF::gradient_implemented() const{  return 1;}voidUHF::print(ostream&o) const{  UnrestrictedSCF::print(o);}//////////////////////////////////////////////////////////////////////////////voidUHF::two_body_energy(double &ec, double &ex){  tim_enter("uhf e2");  ec = 0.0;  ex = 0.0;  if (local_ || local_dens_) {    // grab the data pointers from the G and P matrices    double *apmat;    double *bpmat;    tim_enter("local data");    RefSymmSCMatrix adens = alpha_ao_density();    RefSymmSCMatrix bdens = beta_ao_density();    adens->scale(2.0);    adens->scale_diagonal(0.5);    bdens->scale(2.0);    bdens->scale_diagonal(0.5);    RefSymmSCMatrix aptmp = get_local_data(adens, apmat, SCF::Read);    RefSymmSCMatrix bptmp = get_local_data(bdens, bpmat, SCF::Read);    tim_exit("local data");    // initialize the two electron integral classes    Ref<TwoBodyInt> tbi = integral()->electron_repulsion();    tbi->set_integral_storage(0);    signed char * pmax = init_pmax(apmat);      LocalUHFEnergyContribution lclc(apmat, bpmat);    Ref<PetiteList> pl = integral()->petite_list();    LocalGBuild<LocalUHFEnergyContribution>      gb(lclc, tbi, pl, basis(), scf_grp_, pmax,         desired_value_accuracy()/100.0);    gb.run();    delete[] pmax;    ec = lclc.ec;    ex = lclc.ex;  }  else {    ExEnv::err0() << indent << "Cannot yet use anything but Local matrices\n";    abort();  }  tim_exit("uhf e2");}//////////////////////////////////////////////////////////////////////////////voidUHF::ao_fock(double accuracy){  Ref<PetiteList> pl = integral()->petite_list(basis());    // calculate G.  First transform diff_densa_ to the AO basis, then  // scale the off-diagonal elements by 2.0  RefSymmSCMatrix dda = diff_densa_;  diff_densa_ = pl->to_AO_basis(dda);  diff_densa_->scale(2.0);  diff_densa_->scale_diagonal(0.5);  RefSymmSCMatrix ddb = diff_densb_;  diff_densb_ = pl->to_AO_basis(ddb);  diff_densb_->scale(2.0);  diff_densb_->scale_diagonal(0.5);  // now try to figure out the matrix specialization we're dealing with  // if we're using Local matrices, then there's just one subblock, or  // see if we can convert G and P to local matrices  if (local_ || local_dens_) {    double *gmat, *gmato, *pmat, *pmato;        // grab the data pointers from the G and P matrices    RefSymmSCMatrix gtmp = get_local_data(gmata_, gmat, SCF::Accum);    RefSymmSCMatrix ptmp = get_local_data(diff_densa_, pmat, SCF::Read);    RefSymmSCMatrix gotmp = get_local_data(gmatb_, gmato, SCF::Accum);    RefSymmSCMatrix potmp = get_local_data(diff_densb_, pmato, SCF::Read);    signed char * pmax = init_pmax(pmat);  //      LocalUHFContribution lclc(gmat, pmat, gmato, pmato);//      LocalGBuild<LocalUHFContribution>//        gb(lclc, tbi_, pl, basis(), scf_grp_, pmax,//           desired_value_accuracy()/100.0);//      gb.run();    int i;    int nthread = threadgrp_->nthread();    LocalGBuild<LocalUHFContribution> **gblds =      new LocalGBuild<LocalUHFContribution>*[nthread];    LocalUHFContribution **conts = new LocalUHFContribution*[nthread];        double **gmats = new double*[nthread];    gmats[0] = gmat;    double **gmatos = new double*[nthread];    gmatos[0] = gmato;        Ref<GaussianBasisSet> bs = basis();    int ntri = i_offset(bs->nbasis());    double gmat_accuracy = accuracy;    if (min_orthog_res() < 1.0) { gmat_accuracy *= min_orthog_res(); }    for (i=0; i < nthread; i++) {      if (i) {        gmats[i] = new double[ntri];        memset(gmats[i], 0, sizeof(double)*ntri);        gmatos[i] = new double[ntri];        memset(gmatos[i], 0, sizeof(double)*ntri);      }      conts[i] = new LocalUHFContribution(gmats[i], pmat, gmatos[i], pmato);      gblds[i] = new LocalGBuild<LocalUHFContribution>(*conts[i], tbis_[i],        pl, bs, scf_grp_, pmax, gmat_accuracy, nthread, i        );      threadgrp_->add_thread(i, gblds[i]);    }    tim_enter("start thread");    if (threadgrp_->start_threads() < 0) {      ExEnv::err0() << indent           << "UHF: error starting threads" << endl;      abort();    }    tim_exit("start thread");    tim_enter("stop thread");    if (threadgrp_->wait_threads() < 0) {      ExEnv::err0() << indent           << "UHF: error waiting for threads" << endl;      abort();    }    tim_exit("stop thread");          double tnint=0;    for (i=0; i < nthread; i++) {      tnint += gblds[i]->tnint;      if (i) {        for (int j=0; j < ntri; j++) {          gmat[j] += gmats[i][j];          gmato[j] += gmatos[i][j];        }        delete[] gmats[i];        delete[] gmatos[i];      }      delete gblds[i];      delete conts[i];    }    delete[] gmats;    delete[] gmatos;    delete[] gblds;    delete[] conts;    delete[] pmax;    scf_grp_->sum(&tnint, 1, 0, 0);    ExEnv::out0() << indent << scprintf("%20.0f integrals\n", tnint);        // if we're running on multiple processors, then sum the G matrices    if (scf_grp_->n() > 1) {      scf_grp_->sum(gmat, i_offset(basis()->nbasis()));      scf_grp_->sum(gmato, i_offset(basis()->nbasis()));    }        // if we're running on multiple processors, or we don't have local    // matrices, then accumulate gtmp back into G    if (!local_ || scf_grp_->n() > 1) {      gmata_->convert_accumulate(gtmp);      gmatb_->convert_accumulate(gotmp);    }  }  // for now quit  else {    ExEnv::err0() << indent << "Cannot yet use anything but Local matrices\n";    abort();  }    // get rid of AO delta P  diff_densa_ = dda;  dda = diff_densa_.clone();  diff_densb_ = ddb;  ddb = diff_densb_.clone();  // now symmetrize the skeleton G matrix, placing the result in dda  RefSymmSCMatrix skel_gmat = gmata_.copy();  skel_gmat.scale(1.0/(double)pl->order());  pl->symmetrize(skel_gmat,dda);  skel_gmat = gmatb_.copy();  skel_gmat.scale(1.0/(double)pl->order());  pl->symmetrize(skel_gmat,ddb);    // Fa = H+Ga  focka_.result_noupdate().assign(hcore_);  focka_.result_noupdate().accumulate(dda);  // Fb = H+Gb  fockb_.result_noupdate().assign(hcore_);  fockb_.result_noupdate().accumulate(ddb);  dda.assign(0.0);  accumddh_->accum(dda);  focka_.result_noupdate().accumulate(dda);  fockb_.result_noupdate().accumulate(dda);  focka_.computed()=1;  fockb_.computed()=1;}/////////////////////////////////////////////////////////////////////////////voidUHF::two_body_deriv(double * tbgrad){  two_body_deriv_hf(tbgrad, 1.0);}/////////////////////////////////////////////////////////////////////////////// Local Variables:// mode: c++// c-file-style: "ETS"// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -