⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 osshf.cc

📁 大型并行量子化学软件;支持密度泛函(DFT)。可以进行各种量子化学计算。支持CHARMM并行计算。非常具有应用价值。
💻 CC
字号:
//// osshf.cc --- implementation of the open shell singlet Hartree-Fock SCF class//// Copyright (C) 1997 Limit Point Systems, Inc.//// Author: Edward Seidl <seidl@janed.com>// Maintainer: LPS//// This file is part of the SC Toolkit.//// The SC Toolkit is free software; you can redistribute it and/or modify// it under the terms of the GNU Library General Public License as published by// the Free Software Foundation; either version 2, or (at your option)// any later version.//// The SC Toolkit is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU Library General Public License for more details.//// You should have received a copy of the GNU Library General Public License// along with the SC Toolkit; see the file COPYING.LIB.  If not, write to// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.//// The U.S. Government is granted a limited license as per AL 91-7.//#ifdef __GNUC__#pragma implementation#endif#include <math.h>#include <util/misc/timer.h>#include <util/misc/formio.h>#include <util/state/stateio.h>#include <chemistry/qc/basis/petite.h>#include <chemistry/qc/scf/osshf.h>#include <chemistry/qc/scf/lgbuild.h>#include <chemistry/qc/scf/ltbgrad.h>#include <chemistry/qc/scf/osshftmpl.h>using namespace std;using namespace sc;///////////////////////////////////////////////////////////////////////////// OSSHFstatic ClassDesc OSSHF_cd(  typeid(OSSHF),"OSSHF",1,"public OSSSCF",  0, create<OSSHF>, create<OSSHF>);OSSHF::OSSHF(StateIn& s) :  SavableState(s),  OSSSCF(s){}OSSHF::OSSHF(const Ref<KeyVal>& keyval) :  OSSSCF(keyval){}OSSHF::~OSSHF(){}voidOSSHF::save_data_state(StateOut& s){  OSSSCF::save_data_state(s);}intOSSHF::value_implemented() const{  return 1;}intOSSHF::gradient_implemented() const{  return 1;}voidOSSHF::print(ostream&o) const{  OSSSCF::print(o);}//////////////////////////////////////////////////////////////////////////////voidOSSHF::ao_fock(double accuracy){  Ref<PetiteList> pl = integral()->petite_list(basis());    // calculate G.  First transform cl_dens_diff_ to the AO basis, then  // scale the off-diagonal elements by 2.0  RefSymmSCMatrix dd = cl_dens_diff_;  cl_dens_diff_ = pl->to_AO_basis(dd);  cl_dens_diff_->scale(2.0);  cl_dens_diff_->scale_diagonal(0.5);  RefSymmSCMatrix dda = op_densa_diff_;  op_densa_diff_ = pl->to_AO_basis(dda);  op_densa_diff_->scale(2.0);  op_densa_diff_->scale_diagonal(0.5);    RefSymmSCMatrix ddb = op_densb_diff_;  op_densb_diff_ = pl->to_AO_basis(ddb);  op_densb_diff_->scale(2.0);  op_densb_diff_->scale_diagonal(0.5);    // now try to figure out the matrix specialization we're dealing with  // if we're using Local matrices, then there's just one subblock, or  // see if we can convert G and P to local matrices  if (local_ || local_dens_) {    // grab the data pointers from the G and P matrices    double *gmat, *gmata, *gmatb, *pmat, *pmata, *pmatb;    RefSymmSCMatrix gtmp = get_local_data(cl_gmat_, gmat, SCF::Accum);    RefSymmSCMatrix ptmp = get_local_data(cl_dens_diff_, pmat, SCF::Read);    RefSymmSCMatrix gatmp = get_local_data(op_gmata_, gmata, SCF::Accum);    RefSymmSCMatrix patmp = get_local_data(op_densa_diff_, pmata, SCF::Read);    RefSymmSCMatrix gbtmp = get_local_data(op_gmatb_, gmatb, SCF::Accum);    RefSymmSCMatrix pbtmp = get_local_data(op_densb_diff_, pmatb, SCF::Read);        signed char * pmax = init_pmax(pmat);  //      LocalOSSContribution lclc(gmat, pmat, gmata, pmata, gmatb, pmatb);//      LocalGBuild<LocalOSSContribution>//        gb(lclc, tbi_, pl, basis(), scf_grp_, pmax,//           desired_value_accuracy()/100.0);//      gb.run();    int nthread = threadgrp_->nthread();    LocalGBuild<LocalOSSContribution> **gblds =      new LocalGBuild<LocalOSSContribution>*[nthread];    LocalOSSContribution **conts = new LocalOSSContribution*[nthread];        double **gmatas = new double*[nthread];    gmatas[0] = gmata;    double **gmatbs = new double*[nthread];    gmatbs[0] = gmatb;    double **gmats = new double*[nthread];    gmats[0] = gmat;        Ref<GaussianBasisSet> bs = basis();    int ntri = i_offset(bs->nbasis());    double gmat_accuracy = accuracy;    if (min_orthog_res() < 1.0) { gmat_accuracy *= min_orthog_res(); }    int i;    for (i=0; i < nthread; i++) {      if (i) {        gmatas[i] = new double[ntri];        memset(gmatas[i], 0, sizeof(double)*ntri);        gmatbs[i] = new double[ntri];        memset(gmatbs[i], 0, sizeof(double)*ntri);        gmats[i] = new double[ntri];        memset(gmats[i], 0, sizeof(double)*ntri);      }      conts[i] = new LocalOSSContribution(gmats[i], pmat,                                          gmatas[i], pmata, gmatbs[i], pmatb);      gblds[i] = new LocalGBuild<LocalOSSContribution>(*conts[i], tbis_[i],        pl, bs, scf_grp_, pmax, gmat_accuracy, nthread, i        );      threadgrp_->add_thread(i, gblds[i]);    }    tim_enter("start thread");    if (threadgrp_->start_threads() < 0) {      ExEnv::err0() << indent           << "OSSHF: error starting threads" << endl;      abort();    }    tim_exit("start thread");    tim_enter("stop thread");    if (threadgrp_->wait_threads() < 0) {      ExEnv::err0() << indent           << "OSSHF: error waiting for threads" << endl;      abort();    }    tim_exit("stop thread");          double tnint=0;    for (i=0; i < nthread; i++) {      tnint += gblds[i]->tnint;      if (i) {        for (int j=0; j < ntri; j++) {          gmata[j] += gmatas[i][j];          gmatb[j] += gmatbs[i][j];          gmat[j]  += gmats[i][j];        }        delete[] gmatas[i];        delete[] gmatbs[i];        delete[] gmats[i];      }      delete gblds[i];      delete conts[i];    }    delete[] gmatas;    delete[] gmatbs;    delete[] gmats;    delete[] gblds;    delete[] conts;    delete[] pmax;    // if we're running on multiple processors, then sum the G matrices    if (scf_grp_->n() > 1) {      scf_grp_->sum(gmat, i_offset(basis()->nbasis()));      scf_grp_->sum(gmata, i_offset(basis()->nbasis()));      scf_grp_->sum(gmatb, i_offset(basis()->nbasis()));    }        // if we're running on multiple processors, or we don't have local    // matrices, then accumulate gtmp back into G    if (!local_ || scf_grp_->n() > 1) {      cl_gmat_->convert_accumulate(gtmp);      op_gmata_->convert_accumulate(gatmp);      op_gmatb_->convert_accumulate(gbtmp);    }  }  // for now quit  else {    ExEnv::err0() << indent << "Cannot yet use anything but Local matrices\n";    abort();  }    // get rid of AO delta P  cl_dens_diff_ = dd;  dd = cl_dens_diff_.clone();  op_densa_diff_ = dda;  dda = op_densa_diff_.clone();  op_densb_diff_ = ddb;  ddb = op_densb_diff_.clone();  // now symmetrize the skeleton G matrix, placing the result in dd  RefSymmSCMatrix skel_gmat = cl_gmat_.copy();  skel_gmat.scale(1.0/(double)pl->order());  pl->symmetrize(skel_gmat,dd);  skel_gmat = op_gmata_.copy();  skel_gmat.scale(1.0/(double)pl->order());  pl->symmetrize(skel_gmat,dda);    skel_gmat = op_gmatb_.copy();  skel_gmat.scale(1.0/(double)pl->order());  pl->symmetrize(skel_gmat,ddb);    // F = H+G  cl_fock_.result_noupdate().assign(hcore_);  cl_fock_.result_noupdate().accumulate(dd);  // Fa = H+G-Ga  op_focka_.result_noupdate().assign(cl_fock_.result_noupdate());  dda.scale(-1.0);  op_focka_.result_noupdate().accumulate(dda);  // Fb = H+G-Gb  op_fockb_.result_noupdate().assign(cl_fock_.result_noupdate());  ddb.scale(-1.0);  op_fockb_.result_noupdate().accumulate(ddb);  dd.assign(0.0);  accumddh_->accum(dd);  cl_fock_.result_noupdate().accumulate(dd);  op_focka_.result_noupdate().accumulate(dd);  op_fockb_.result_noupdate().accumulate(dd);  cl_fock_.computed()=1;  op_focka_.computed()=1;  op_fockb_.computed()=1;}//////////////////////////////////////////////////////////////////////////////voidOSSHF::two_body_energy(double& ec, double& ex){  tim_enter("oshf e2");  ec = 0.0;  ex = 0.0;  if (local_ || local_dens_) {    Ref<PetiteList> pl = integral()->petite_list(basis());        // grab the data pointers from the G and P matrices    double *dpmat;    double *sapmat;    double *sbpmat;    tim_enter("local data");    RefSymmSCMatrix adens = alpha_density();    RefSymmSCMatrix bdens = beta_density();    RefSymmSCMatrix ddens = adens+bdens;    // 2C+a+b - 2(c+b) = a-b    RefSymmSCMatrix sdensa = bdens.copy();    sdensa.scale(-2.0);    sdensa.accumulate(ddens);    dynamic_cast<BlockedSymmSCMatrix*>(sdensa.pointer())->block(osb_)->assign(0.0);    // 2C+a+b - 2(c+a) = b-a    RefSymmSCMatrix sdensb = adens.copy();    sdensb.scale(-2.0);    sdensb.accumulate(ddens);    dynamic_cast<BlockedSymmSCMatrix*>(sdensb.pointer())->block(osa_)->assign(0.0);    adens=0;    bdens=0;    ddens = pl->to_AO_basis(ddens);    sdensa = pl->to_AO_basis(sdensa);    sdensb = pl->to_AO_basis(sdensb);        ddens->scale(2.0);    ddens->scale_diagonal(0.5);    sdensa->scale(2.0);    sdensa->scale_diagonal(0.5);    sdensb->scale(2.0);    sdensb->scale_diagonal(0.5);    RefSymmSCMatrix dptmp = get_local_data(ddens, dpmat, SCF::Read);    RefSymmSCMatrix saptmp = get_local_data(sdensa, sapmat, SCF::Read);    RefSymmSCMatrix sbptmp = get_local_data(sdensb, sbpmat, SCF::Read);    tim_exit("local data");    // initialize the two electron integral classes    Ref<TwoBodyInt> tbi = integral()->electron_repulsion();    tbi->set_integral_storage(0);    signed char * pmax = init_pmax(dpmat);      LocalOSSEnergyContribution lclc(dpmat, sapmat, sbpmat);    LocalGBuild<LocalOSSEnergyContribution>      gb(lclc, tbi, pl, basis(), scf_grp_, pmax,         desired_value_accuracy()/100.0);    gb.run();    delete[] pmax;    ec = lclc.ec;    ex = lclc.ex;  }  // for now quit  else {    ExEnv::err0() << indent << "Cannot yet use anything but Local matrices\n";    abort();  }  tim_exit("oshf e2");}/////////////////////////////////////////////////////////////////////////////voidOSSHF::two_body_deriv(double * tbgrad){  Ref<SCElementMaxAbs> m = new SCElementMaxAbs;  cl_dens_.element_op(m.pointer());  double pmax = m->result();  m=0;  // now try to figure out the matrix specialization we're dealing with.  // if we're using Local matrices, then there's just one subblock, or  // see if we can convert P to local matrices  if (local_ || local_dens_) {    // grab the data pointers from the P matrices    double *pmat, *pmata, *pmatb;    RefSymmSCMatrix ptmp = get_local_data(cl_dens_, pmat, SCF::Read);    RefSymmSCMatrix patmp = get_local_data(op_densa_, pmata, SCF::Read);    RefSymmSCMatrix pbtmp = get_local_data(op_densb_, pmatb, SCF::Read);      LocalOSSGradContribution l(pmat,pmata,pmatb);    Ref<TwoBodyDerivInt> tbi = integral()->electron_repulsion_deriv();    Ref<PetiteList> pl = integral()->petite_list();    LocalTBGrad<LocalOSSGradContribution> tb(l, tbi, pl, basis(), scf_grp_,                                             tbgrad, pmax, desired_gradient_accuracy());    tb.run();    scf_grp_->sum(tbgrad,3 * basis()->molecule()->natom());  }  // for now quit  else {    ExEnv::err0() << indent         << "OSSHF::two_body_deriv: can't do gradient yet\n";    abort();  }}/////////////////////////////////////////////////////////////////////////////// Local Variables:// mode: c++// c-file-style: "ETS"// End:

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -