📄 mbptr12.h
字号:
//// mbptr12.h//// Copyright (C) 2001 Edward Valeev//// Author: Edward Valeev <edward.valeev@chemistry.gatech.edu>// Maintainer: EV//// This file is part of the SC Toolkit.//// The SC Toolkit is free software; you can redistribute it and/or modify// it under the terms of the GNU Library General Public License as published by// the Free Software Foundation; either version 2, or (at your option)// any later version.//// The SC Toolkit is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the// GNU Library General Public License for more details.//// You should have received a copy of the GNU Library General Public License// along with the SC Toolkit; see the file COPYING.LIB. If not, write to// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.//// The U.S. Government is granted a limited license as per AL 91-7.//#ifndef _chemistry_qc_mbptr12_mbptr12_h#define _chemistry_qc_mbptr12_mbptr12_h#ifdef __GNUC__#pragma interface#endif#include <util/misc/compute.h>#include <util/group/memory.h>#include <util/group/message.h>#include <util/group/thread.h>#include <chemistry/qc/basis/obint.h>#include <chemistry/qc/basis/tbint.h>#include <chemistry/qc/scf/scf.h>#include <chemistry/qc/mbpt/mbpt.h>#include <chemistry/qc/mbptr12/linearr12.h>#include <chemistry/qc/mbptr12/vxb_eval.h>#include <chemistry/qc/mbptr12/vxb_eval_info.h>#include <chemistry/qc/mbptr12/mp2r12_energy.h>namespace sc {// //////////////////////////////////////////////////////////////////////////class R12IntEval;class R12IntEvalInfo;class MP2R12Energy; /** The MBPT2_R12 class implements several linear R12 second-order perturbation theorymethods. */class MBPT2_R12: public MBPT2 { Ref<R12IntEval> r12eval_; // the R12 intermediates evaluator /** These are MP2-R12 energy objects for each MP2-R12 method, since several different energies can be evaluated with the same set of intermediates */ Ref<MP2R12Energy> r12a_energy_; Ref<MP2R12Energy> r12ap_energy_; Ref<MP2R12Energy> r12b_energy_; Ref<GaussianBasisSet> aux_basis_; Ref<SCVector> epair_0_, epair_1_; // Singlet/triplet pair energies if spin-adapted // Alpha-beta/alpha-alpha pair energies if spin-orbital#define ref_to_mp2r12_acc_ 100.0 double mp2_corr_energy_; double r12_corr_energy_; LinearR12::StandardApproximation stdapprox_; R12IntEvalInfo::StoreMethod r12ints_method_; char* r12ints_file_; bool spinadapted_; void init_variables_(); // This checks if the integral factory is suitable for R12 calculations void check_integral_factory_(); /* calculate the MP2-R12 energy in std approximations A and A' */ void compute_energy_a_(); protected: // implement the Compute::compute() function, // overrides MBPT2::compute() void compute(); public: MBPT2_R12(StateIn&); /** The KeyVal constructor. <dl> <dt><tt>stdapprox</tt><dd> This gives a string that must take on one of the values below. The default is A. <dl> <dt><tt>A</tt><dd> Use second order M\o{}ller-Plesset perturbation theory with linear R12 terms in standard approximation A (MP2-R12/A). Only energies can be computed with the MP2-R12/A method. <dt><tt>A'</tt><dd> Use second order M\o{}ller-Plesset perturbation theory with linear R12 terms in standard approximation A' (MP2-R12/A'). This will cause MP2-R12/A energies to be computed also. Only energies can be computed with the MP2-R12/A' method. <dt><tt>B</tt><dd> Use second order M\o{}ller-Plesset perturbation theory with linear R12 terms in standard approximation B. This method is not implemented yet. </dl> <dt><tt>spinadapted</tt><dd> This specifies whether to compute spin-adapted or spin-orbital pair energies. Default is to compute spin-adapted energies. <dt><tt>aux_basis</tt><dd> This specifies the auxiliary basis to be used for the resolution of the identity. Default is to use the same basis as for the orbital expansion. <dt><tt>r12ints</tt><dd> This specifies how to store transformed MO integrals. Valid values are: <dl> <dt><tt>mem-posix</tt><dd> Store integrals in memory for single-pass situations and in a binary file on task 0's node using POSIX I/O for multipass situations. <tt>posix</tt> is usually less efficient than <tt>mpi</tt> for distributed parallel multipass runs since the I/O is performed by one task only. However, this method guaranteed to work in all types of environments, hence <tt>mem-posix</tt> is the default. <dt><tt>posix</tt><dd> Store integrals in a binary file on task 0's node using POSIX I/O. This method is different from <tt>mem-posix</tt> in that it forces the integrals out to disk even if they could be stored in memory. <tt>posix</tt> should only be used for benchmarking and testing purposes. <dt><tt>mem-mpi</tt><dd> Store integrals in memory for single-pass situations and in a binary file using MPI-I/O for multipass situations. This method assumes the availability of MPI-I/O. <tt>mem-mpi</tt> is the preferred choice in distributed environments which have MPI-I/O available. <dt><tt>mpi</tt><dd> Store integrals in a binary file using MPI-I/O. This method is different from <tt>mem-mpi</tt> in that it forces the integrals out to disk even if they could be stored in memory. <tt>mpi</tt> should only be used for benchmarking and testing purposes. <dt><tt>mem</tt><dd> Store integrals in memory. Can only be used with single-pass transformations. This method should only be used for testing purposes </dl> If <tt>r12ints</tt> is not specified, then <tt>mem-posix</tt> method will be used. If user wishes to use MPI-I/O, pending its availability, for higher parallel efficiency, <tt>r12ints</tt> should be explicitly set to <tt>mem-mpi</tt>. <dt><tt>r12ints_file</tt><dd> This specifies which file to use to store transformed MO integrals if <tt>r12ints=posix-io</tt> or <tt>r12ints=mpi-io</tt> is used. Default is "./<inputbasename>.r12ints.dat", where <inputbasename> is the name of the input file without ".in". If MPI-I/O is used then it is user's responsibility to ensure that the file resides on a file system that supports MPI-I/O. </dl> */ MBPT2_R12(const Ref<KeyVal>&); ~MBPT2_R12(); void save_data_state(StateOut&); Ref<GaussianBasisSet> aux_basis() const; LinearR12::StandardApproximation stdapprox() const; bool spinadapted() const; R12IntEvalInfo::StoreMethod r12ints_method() const; char* r12ints_file() const; double corr_energy(); double r12_corr_energy(); RefSymmSCMatrix density(); void obsolete(); int gradient_implemented() const; int value_implemented() const; void print(std::ostream&o=ExEnv::out0()) const;};}#endif// Local Variables:// mode: c++// c-file-style: "CLJ"// End:
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -